These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21612230)

  • 21. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Synthesis of Copper Nanoparticles for Printed Electronic Materials Using Liquid Phase Reduction Method.
    Li K; Jiang X
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates.
    Farraj Y; Smooha A; Kamyshny A; Magdassi S
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8766-8773. PubMed ID: 28229585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions.
    Yong Y; Nguyen MT; Tsukamoto H; Matsubara M; Liao YC; Yonezawa T
    Sci Rep; 2017 Mar; 7():45150. PubMed ID: 28338044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ohmic contact formation for inkjet-printed nanoparticle copper inks on highly doped GaAs.
    Hayati-Roodbari N; Wheeldon A; Hendler C; Fian A; Trattnig R
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33621957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper conductive patterns through spray-pyrolysis of copper-diethanolamine complex solution.
    Chotipanich J; Abu Bakar SH; Arponwichanop A; Yonezawa T; Kheawhom S
    PLoS One; 2018; 13(7):e0200084. PubMed ID: 29969478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Antioxidative Conductive Copper Inks with Superior Adhesion.
    Ma WY; Cheng YY; Chen JK; Chan KH; Lin ZJ; Chou WH; Chang WC
    J Nanosci Nanotechnol; 2018 Jan; 18(1):318-322. PubMed ID: 29768847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.
    Hwang HJ; Joo SJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25413-23. PubMed ID: 26505908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink.
    Hwang HJ; Oh KH; Kim HS
    Sci Rep; 2016 Jan; 6():19696. PubMed ID: 26806215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay of processing, morphological order, and charge-carrier mobility in polythiophene thin films deposited by different methods: comparison of spin-cast, drop-cast, and inkjet-printed films.
    Wong LY; Png RQ; Silva FB; Chua LL; Repaka DV; Shi-Chen ; Gao XY; Ke L; Chua SJ; Wee AT; Ho PK
    Langmuir; 2010 Oct; 26(19):15494-507. PubMed ID: 20828174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photometer for monitoring the thickness of inkjet printed films for organic electronic and sensor applications.
    Im J; Sengupta SK; Whitten JE
    Rev Sci Instrum; 2010 Mar; 81(3):034103. PubMed ID: 20370198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct writing patterns for electroless plated copper thin film on plastic substrates.
    Liao YC; Kao ZK
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5109-13. PubMed ID: 22989044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Additive Fabrication of Conductive Patterns by a Template Transfer Process Based on Benzotriazole Adsorption As a Separation Layer.
    Chang Y; Yang ZG
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14211-9. PubMed ID: 27171553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A highly reliable copper nanowire/nanoparticle ink pattern with high conductivity on flexible substrate prepared via a flash light-sintering technique.
    Joo SJ; Park SH; Moon CJ; Kim HS
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5674-84. PubMed ID: 25714508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films.
    Kim C; Nogi M; Suganuma K; Yamato Y
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2168-73. PubMed ID: 22452572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink.
    Zhang Y; Zhu P; Li G; Zhao T; Fu X; Sun R; Zhou F; Wong CP
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):560-7. PubMed ID: 24328198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.
    Liu J; Chen H; Ji H; Li M
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33289-33298. PubMed ID: 27934145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films.
    Dharmadasa R; Jha M; Amos DA; Druffel T
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13227-34. PubMed ID: 24283767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.