These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 21612232)
21. WJD008, a dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin inhibitor, prevents PI3K signaling and inhibits the proliferation of transformed cells with oncogenic PI3K mutant. Li T; Wang J; Wang X; Yang N; Chen SM; Tong LJ; Yang CH; Meng LH; Ding J J Pharmacol Exp Ther; 2010 Sep; 334(3):830-8. PubMed ID: 20522531 [TBL] [Abstract][Full Text] [Related]
22. Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Sunayama J; Matsuda K; Sato A; Tachibana K; Suzuki K; Narita Y; Shibui S; Sakurada K; Kayama T; Tomiyama A; Kitanaka C Stem Cells; 2010 Nov; 28(11):1930-9. PubMed ID: 20857497 [TBL] [Abstract][Full Text] [Related]
23. Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex. Sui L; Wang J; Li BM Learn Mem; 2008 Oct; 15(10):762-76. PubMed ID: 18832563 [TBL] [Abstract][Full Text] [Related]
24. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Van Aller GS; Carson JD; Tang W; Peng H; Zhao L; Copeland RA; Tummino PJ; Luo L Biochem Biophys Res Commun; 2011 Mar; 406(2):194-9. PubMed ID: 21300025 [TBL] [Abstract][Full Text] [Related]
25. Design, synthesis and biological evaluation of novel 4-alkynyl-quinoline derivatives as PI3K/mTOR dual inhibitors. Lv X; Ying H; Ma X; Qiu N; Wu P; Yang B; Hu Y Eur J Med Chem; 2015 Jun; 99():36-50. PubMed ID: 26046312 [TBL] [Abstract][Full Text] [Related]
26. Structure-based design of a novel series of potent, selective inhibitors of the class I phosphatidylinositol 3-kinases. Smith AL; D'Angelo ND; Bo YY; Booker SK; Cee VJ; Herberich B; Hong FT; Jackson CL; Lanman BA; Liu L; Nishimura N; Pettus LH; Reed AB; Tadesse S; Tamayo NA; Wurz RP; Yang K; Andrews KL; Whittington DA; McCarter JD; Miguel TS; Zalameda L; Jiang J; Subramanian R; Mullady EL; Caenepeel S; Freeman DJ; Wang L; Zhang N; Wu T; Hughes PE; Norman MH J Med Chem; 2012 Jun; 55(11):5188-219. PubMed ID: 22548365 [TBL] [Abstract][Full Text] [Related]
27. Identification of novel 7-amino-5-methyl-1,6-naphthyridin-2(1H)-one derivatives as potent PI3K/mTOR dual inhibitors. Lin S; Han F; Liu P; Tao J; Zhong X; Liu X; Yi C; Xu H Bioorg Med Chem Lett; 2014 Feb; 24(3):790-3. PubMed ID: 24433860 [TBL] [Abstract][Full Text] [Related]
28. Discovery of a series of N-(5-(quinolin-6-yl)pyridin-3-yl)benzenesulfonamides as PI3K/mTOR dual inhibitors. Zhang J; Lv X; Ma X; Hu Y Eur J Med Chem; 2017 Feb; 127():509-520. PubMed ID: 28109945 [TBL] [Abstract][Full Text] [Related]
29. Discovery of (thienopyrimidin-2-yl)aminopyrimidines as potent, selective, and orally available pan-PI3-kinase and dual pan-PI3-kinase/mTOR inhibitors for the treatment of cancer. Sutherlin DP; Sampath D; Berry M; Castanedo G; Chang Z; Chuckowree I; Dotson J; Folkes A; Friedman L; Goldsmith R; Heffron T; Lee L; Lesnick J; Lewis C; Mathieu S; Nonomiya J; Olivero A; Pang J; Prior WW; Salphati L; Sideris S; Tian Q; Tsui V; Wan NC; Wang S; Wiesmann C; Wong S; Zhu BY J Med Chem; 2010 Feb; 53(3):1086-97. PubMed ID: 20050669 [TBL] [Abstract][Full Text] [Related]
30. Structural optimization towards promising β-methyl-4-acrylamido quinoline derivatives as PI3K/mTOR dual inhibitors for anti-cancer therapy: The in vitro and in vivo biological evaluation. He R; Xu B; Ping L; Lv X Eur J Med Chem; 2021 Mar; 214():113249. PubMed ID: 33561608 [TBL] [Abstract][Full Text] [Related]
31. 4-Anilino-7,8-dialkoxybenzo[g]quinoline-3-carbonitriles as potent Src kinase inhibitors. Berger DM; Dutia M; Birnberg G; Powell D; Boschelli DH; Wang YD; Ravi M; Yaczko D; Golas J; Lucas J; Boschelli F J Med Chem; 2005 Sep; 48(19):5909-20. PubMed ID: 16161995 [TBL] [Abstract][Full Text] [Related]
32. Potent, selective, and orally bioavailable inhibitors of the mammalian target of rapamycin kinase domain exhibiting single agent antiproliferative activity. Koehler MF; Bergeron P; Blackwood E; Bowman KK; Chen YH; Deshmukh G; Ding X; Epler J; Lau K; Lee L; Liu L; Ly C; Malek S; Nonomiya J; Oeh J; Ortwine DF; Sampath D; Sideris S; Trinh L; Truong T; Wu J; Pei Z; Lyssikatos JP J Med Chem; 2012 Dec; 55(24):10958-71. PubMed ID: 23199076 [TBL] [Abstract][Full Text] [Related]
33. Structure-activity relationships of phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitors: investigations of various 6,5-heterocycles to improve metabolic stability. Stec MM; Andrews KL; Booker SK; Caenepeel S; Freeman DJ; Jiang J; Liao H; McCarter J; Mullady EL; San Miguel T; Subramanian R; Tamayo N; Wang L; Yang K; Zalameda LP; Zhang N; Hughes PE; Norman MH J Med Chem; 2011 Jul; 54(14):5174-84. PubMed ID: 21714526 [TBL] [Abstract][Full Text] [Related]
34. Rapid identification of ETP-46992, orally bioavailable PI3K inhibitor, selective versus mTOR. Martínez González S; Hernández AI; Varela C; Lorenzo M; Ramos-Lima F; Cendón E; Cebrián D; Aguirre E; Gomez-Casero E; Albarrán MI; Alfonso P; García-Serelde B; Mateos G; Oyarzabal J; Rabal O; Mulero F; Gonzalez-Granda T; Link W; Fominaya J; Barbacid M; Bischoff JR; Pizcueta P; Blanco-Aparicio C; Pastor J Bioorg Med Chem Lett; 2012 Aug; 22(16):5208-14. PubMed ID: 22819764 [TBL] [Abstract][Full Text] [Related]
35. The imidazo[1,2-a]pyridine ring system as a scaffold for potent dual phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors. Stec MM; Andrews KL; Bo Y; Caenepeel S; Liao H; McCarter J; Mullady EL; San Miguel T; Subramanian R; Tamayo N; Whittington DA; Wang L; Wu T; Zalameda LP; Zhang N; Hughes PE; Norman MH Bioorg Med Chem Lett; 2015 Oct; 25(19):4136-42. PubMed ID: 26298499 [TBL] [Abstract][Full Text] [Related]
36. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Serra V; Markman B; Scaltriti M; Eichhorn PJ; Valero V; Guzman M; Botero ML; Llonch E; Atzori F; Di Cosimo S; Maira M; Garcia-Echeverria C; Parra JL; Arribas J; Baselga J Cancer Res; 2008 Oct; 68(19):8022-30. PubMed ID: 18829560 [TBL] [Abstract][Full Text] [Related]
37. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Marzec M; Kasprzycka M; Liu X; El-Salem M; Halasa K; Raghunath PN; Bucki R; Wlodarski P; Wasik MA Oncogene; 2007 Aug; 26(38):5606-14. PubMed ID: 17353907 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and SAR of novel 4-morpholinopyrrolopyrimidine derivatives as potent phosphatidylinositol 3-kinase inhibitors. Chen Z; Venkatesan AM; Dehnhardt CM; Ayral-Kaloustian S; Brooijmans N; Mallon R; Feldberg L; Hollander I; Lucas J; Yu K; Kong F; Mansour TS J Med Chem; 2010 Apr; 53(8):3169-82. PubMed ID: 20334367 [TBL] [Abstract][Full Text] [Related]
39. Lead optimization of N-3-substituted 7-morpholinotriazolopyrimidines as dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitors: discovery of PKI-402. Dehnhardt CM; Venkatesan AM; Delos Santos E; Chen Z; Santos O; Ayral-Kaloustian S; Brooijmans N; Mallon R; Hollander I; Feldberg L; Lucas J; Chaudhary I; Yu K; Gibbons J; Abraham R; Mansour TS J Med Chem; 2010 Jan; 53(2):798-810. PubMed ID: 19968288 [TBL] [Abstract][Full Text] [Related]