These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 21612244)
1. Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Sunkara B; Zhan J; Kolesnichenko I; Wang Y; He J; Holland JE; McPherson GL; John VT Langmuir; 2011 Jun; 27(12):7854-9. PubMed ID: 21612244 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional iron-carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Zhan J; Kolesnichenko I; Sunkara B; He J; McPherson GL; Piringer G; John VT Environ Sci Technol; 2011 Mar; 45(5):1949-54. PubMed ID: 21299241 [TBL] [Abstract][Full Text] [Related]
3. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Zhang M; He F; Zhao D; Hao X Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362 [TBL] [Abstract][Full Text] [Related]
4. Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. Wang W; Zhou M; Jin Z; Li T J Hazard Mater; 2010 Jan; 173(1-3):724-30. PubMed ID: 19773119 [TBL] [Abstract][Full Text] [Related]
5. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons. Velimirovic M; Larsson PO; Simons Q; Bastiaens L Chemosphere; 2013 Nov; 93(9):2040-5. PubMed ID: 23962383 [TBL] [Abstract][Full Text] [Related]
6. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. Kim H; Hong HJ; Jung J; Kim SH; Yang JW J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289 [TBL] [Abstract][Full Text] [Related]
7. MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. Yang SJ; Im JH; Kim T; Lee K; Park CR J Hazard Mater; 2011 Feb; 186(1):376-82. PubMed ID: 21146926 [TBL] [Abstract][Full Text] [Related]
8. Oxygen, carbon, and sulfur segregation in annealed and unannealed zerovalent iron substrates. Papastavros E; Shea PJ; Langell MA Langmuir; 2004 Dec; 20(26):11509-16. PubMed ID: 15595777 [TBL] [Abstract][Full Text] [Related]
9. Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Xiu ZM; Gregory KB; Lowry GV; Alvarez PJ Environ Sci Technol; 2010 Oct; 44(19):7647-51. PubMed ID: 20804135 [TBL] [Abstract][Full Text] [Related]
10. Preparation and application of granular ZnO/Al2O3 catalyst for the removal of hazardous trichloroethylene. Chen JC; Tang CT J Hazard Mater; 2007 Apr; 142(1-2):88-96. PubMed ID: 16949739 [TBL] [Abstract][Full Text] [Related]
11. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. Wang X; Chen C; Chang Y; Liu H J Hazard Mater; 2009 Jan; 161(2-3):815-23. PubMed ID: 18513856 [TBL] [Abstract][Full Text] [Related]
12. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. Bennett P; He F; Zhao D; Aiken B; Feldman L J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350 [TBL] [Abstract][Full Text] [Related]
13. Remediation of PCB contaminated soils using iron nano-particles. Varanasi P; Fullana A; Sidhu S Chemosphere; 2007 Jan; 66(6):1031-8. PubMed ID: 16962632 [TBL] [Abstract][Full Text] [Related]
14. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Bezbaruah AN; Krajangpan S; Chisholm BJ; Khan E; Bermudez JJ J Hazard Mater; 2009 Jul; 166(2-3):1339-43. PubMed ID: 19178997 [TBL] [Abstract][Full Text] [Related]
15. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Barnes RJ; Riba O; Gardner MN; Scott TB; Jackman SA; Thompson IP Chemosphere; 2010 Apr; 79(4):448-54. PubMed ID: 20156632 [TBL] [Abstract][Full Text] [Related]
16. Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene. Lin CJ; Liou YH; Lo SL Chemosphere; 2009 Jan; 74(2):314-9. PubMed ID: 18992911 [TBL] [Abstract][Full Text] [Related]
17. Water-in-trichloroethylene emulsions stabilized by uniform carbon microspheres. Venkataraman P; Sunkara B; St Dennis JE; He J; John VT; Bose A Langmuir; 2012 Jan; 28(2):1058-63. PubMed ID: 22181984 [TBL] [Abstract][Full Text] [Related]
18. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Cho Y; Choi SI Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967 [TBL] [Abstract][Full Text] [Related]
19. Biogenic nanopalladium based remediation of chlorinated hydrocarbons in marine environments. Hosseinkhani B; Hennebel T; Van Nevel S; Verschuere S; Yakimov MM; Cappello S; Blaghen M; Boon N Environ Sci Technol; 2014; 48(1):550-7. PubMed ID: 24350777 [TBL] [Abstract][Full Text] [Related]
20. Coupled reduction of chlorinated hydrocarbons and heavy metals by zerovalent silicon. Doong RA; Lee CC; Chen KT; Wu SF Water Sci Technol; 2004; 50(8):89-96. PubMed ID: 15566191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]