These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 21612244)

  • 21. Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron.
    Prommer H; Aziz LH; Bolaño N; Taubald H; Schüth C
    J Contam Hydrol; 2008 Apr; 97(1-2):13-26. PubMed ID: 18267347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elemental metals for environmental remediation: learning from cementation process.
    Noubactep C
    J Hazard Mater; 2010 Sep; 181(1-3):1170-4. PubMed ID: 20554389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.
    Lee W; Batchelor B
    Chemosphere; 2004 Sep; 56(10):999-1009. PubMed ID: 15268967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.
    Jung Lin C; Lo SL
    Water Res; 2005 Mar; 39(6):1037-46. PubMed ID: 15766958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron.
    Lin CJ; Lo SL; Liou YH
    J Hazard Mater; 2004 Dec; 116(3):219-28. PubMed ID: 15601615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of iron-based technologies in contaminated land and groundwater remediation: a review.
    Cundy AB; Hopkinson L; Whitby RL
    Sci Total Environ; 2008 Aug; 400(1-3):42-51. PubMed ID: 18692221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of activated carbon as a reactive support to produce highly active-regenerable Fe-based reduction system for environmental remediation.
    Pereira MC; Coelho FS; Nascentes CC; Fabris JD; Araújo MH; Sapag K; Oliveira LC; Lago RM
    Chemosphere; 2010 Sep; 81(1):7-12. PubMed ID: 20723968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons.
    Zhan J; Sunkara B; Le L; John VT; He J; McPherson GL; Piringer G; Lu Y
    Environ Sci Technol; 2009 Nov; 43(22):8616-21. PubMed ID: 20028061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A process for the purification of organochlorine contaminated activated carbon: Sequential solvent purging and reductive dechlorination.
    Lee M; Cord-Ruwisch R; Manefield M
    Water Res; 2010 Mar; 44(5):1580-90. PubMed ID: 19939428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile Synthesis and Characterization of Fe/FeS Nanoparticles for Environmental Applications.
    Kim EJ; Kim JH; Azad AM; Chang YS
    ACS Appl Mater Interfaces; 2011 May; 3(5):1457-62. PubMed ID: 21520939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of nitrate by resin-supported nanoscale zero-valent iron.
    Park H; Park YM; Yoo KM; Lee SH
    Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of membrane immobilization on particle formation and trichloroethylene dechlorination for bimetallic Fe/Ni nanoparticles in cellulose acetate membranes.
    Meyer DE; Bhattacharyya D
    J Phys Chem B; 2007 Jun; 111(25):7142-54. PubMed ID: 17530798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
    Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A
    J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles.
    Barnes RJ; Riba O; Gardner MN; Singer AC; Jackman SA; Thompson IP
    Chemosphere; 2010 Jul; 80(5):554-62. PubMed ID: 20451949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.
    Chen J; Xiu Z; Lowry GV; Alvarez PJ
    Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions.
    Velimirovic M; Larsson PO; Simons Q; Bastiaens L
    J Hazard Mater; 2013 May; 252-253():204-12. PubMed ID: 23510992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks.
    Pang J; Stuecker JN; Jiang Y; Bhakta AJ; Branson ED; Li P; Cesarano J; Sutton D; Calvert P; Brinker CJ
    Small; 2008 Jul; 4(7):982-9. PubMed ID: 18581410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metallic impurities within residual catalyst metallic nanoparticles are in some cases responsible for "electrocatalytic" effect of carbon nanotubes.
    Pumera M; Iwai H
    Chem Asian J; 2009 Apr; 4(4):554-60. PubMed ID: 19235183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of biotransformation of chlorinated hydrocarbons in a biostimulation study: added value via stable carbon isotope analysis.
    Hirschorn SK; Grostern A; Lacrampe-Couloume G; Edwards EA; Mackinnon L; Repta C; Major DW; Sherwood Lollar B
    J Contam Hydrol; 2007 Dec; 94(3-4):249-60. PubMed ID: 17689820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactive adsorption of NO2 at ambient conditions on iron-containing polymer-based porous carbons.
    Bashkova S; Bandosz TJ
    ChemSusChem; 2011 Mar; 4(3):404-12. PubMed ID: 21290609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.