These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21612278)

  • 21. Opening the Arg-Glu salt bridge in myosin: computational study.
    Kaliman I; Grigorenko B; Shadrina M; Nemukhin A
    Phys Chem Chem Phys; 2009 Jun; 11(24):4804-7. PubMed ID: 19506754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction.
    Muñoz-Clares RA; González-Segura L; Díaz-Sánchez AG
    Chem Biol Interact; 2011 May; 191(1-3):137-46. PubMed ID: 21195066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic results implicating a polar radical reaction pathway in the rearrangement catalyzed by alpha-methyleneglutarate mutase.
    Newcomb M; Miranda N
    J Am Chem Soc; 2003 Apr; 125(14):4080-6. PubMed ID: 12670228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: Ab initio and free energy quantum mechanical/molecular mechanical calculations.
    Dieterich JM; Werner HJ; Mata RA; Metz S; Thiel W
    J Chem Phys; 2010 Jan; 132(3):035101. PubMed ID: 20095751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA
    Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the active site glutamate in the rearrangement of glutamate to 3-methylaspartate catalyzed by adenosylcobalamin-dependent glutamate mutase.
    Madhavapeddi P; Marsh EN
    Chem Biol; 2001 Dec; 8(12):1143-9. PubMed ID: 11755393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical analysis of the diradical nature of adenosylcobalamin cofactor-tyrosine complex in B12-dependent mutases: inspiring PCET-driven enzymatic catalysis.
    Kozlowski PM; Kamachi T; Kumar M; Nakayama T; Yoshizawa K
    J Phys Chem B; 2010 May; 114(17):5928-39. PubMed ID: 20387785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam.
    Zheng J; Wang D; Thiel W; Shaik S
    J Am Chem Soc; 2006 Oct; 128(40):13204-15. PubMed ID: 17017800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic mechanism and product specificity of rubisco large subunit methyltransferase: QM/MM and MD investigations.
    Zhang X; Bruice TC
    Biochemistry; 2007 May; 46(18):5505-14. PubMed ID: 17429949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum mechanical/molecular mechanical molecular dynamics and free energy simulations of the thiopurine S-methyltransferase reaction with 6-mercaptopurine.
    Pan XL; Cui FC; Liu JY
    J Phys Chem B; 2011 Jun; 115(24):8033-7. PubMed ID: 21615136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How the substrate D-glutamate drives the catalytic action of Bacillus subtilis glutamate racemase.
    Puig E; Mixcoha E; Garcia-Viloca M; González-Lafont A; Lluch JM
    J Am Chem Soc; 2009 Mar; 131(10):3509-21. PubMed ID: 19227983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tritium partitioning and isotope effects in adenosylcobalamin-dependent glutamate mutase.
    Chih HW; Marsh EN
    Biochemistry; 2001 Oct; 40(43):13060-7. PubMed ID: 11669644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism.
    Metz S; Thiel W
    J Am Chem Soc; 2009 Oct; 131(41):14885-902. PubMed ID: 19788181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The protein backbone makes important contributions to 4-oxalocrotonate tautomerase enzyme catalysis: understanding from theory and experiment.
    Cisneros GA; Wang M; Silinski P; Fitzgerald MC; Yang W
    Biochemistry; 2004 Jun; 43(22):6885-92. PubMed ID: 15170325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Essential role of glutamate 317 in galactosyl transfer by α3GalT: a computational study.
    Gómez H; Lluch JM; Masgrau L
    Carbohydr Res; 2012 Jul; 356():204-8. PubMed ID: 22520506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QM/MM study on the catalytic mechanism of cellulose hydrolysis catalyzed by cellulase Cel5A from Acidothermus cellulolyticus.
    Liu J; Wang X; Xu D
    J Phys Chem B; 2010 Jan; 114(3):1462-70. PubMed ID: 20041728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Minimum energy reaction profiles for ATP hydrolysis in myosin.
    Grigorenko BL; Kaliman IA; Nemukhin AV
    J Mol Graph Model; 2011 Nov; 31():1-4. PubMed ID: 21839658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide hydrolysis catalyzed by matrix metalloproteinase 2: a computational study.
    Díaz N; Suárez D
    J Phys Chem B; 2008 Jul; 112(28):8412-24. PubMed ID: 18570467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Second step of hydrolytic dehalogenation in haloalkane dehalogenase investigated by QM/MM methods.
    Otyepka M; Banás P; Magistrato A; Carloni P; Damborský J
    Proteins; 2008 Feb; 70(3):707-17. PubMed ID: 17729274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.