These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21612525)

  • 41. Borrelia burgdorferi population kinetics and selected gene expression at the host-vector interface.
    Hodzic E; Feng S; Freet KJ; Borjesson DL; Barthold SW
    Infect Immun; 2002 Jul; 70(7):3382-8. PubMed ID: 12065476
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands.
    Jahfari S; Hofhuis A; Fonville M; van der Giessen J; van Pelt W; Sprong H
    PLoS Negl Trop Dis; 2016 Oct; 10(10):e0005042. PubMed ID: 27706159
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vector competence of the Australian paralysis tick, Ixodes holocyclus, for the Lyme disease spirochete Borrelia burgdorferi.
    Piesman J; Stone BF
    Int J Parasitol; 1991 Feb; 21(1):109-11. PubMed ID: 2040556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discovery of the Lyme disease spirochete and its relation to tick vectors.
    Burgdorfer W
    Yale J Biol Med; 1984; 57(4):515-20. PubMed ID: 6516454
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Invasion of the lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity.
    Hamer SA; Tsao JI; Walker ED; Hickling GJ
    Ecohealth; 2010 Aug; 7(1):47-63. PubMed ID: 20229127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Borrelia burgdorferi bba66 gene inactivation results in attenuated mouse infection by tick transmission.
    Patton TG; Brandt KS; Nolder C; Clifton DR; Carroll JA; Gilmore RD
    Infect Immun; 2013 Jul; 81(7):2488-98. PubMed ID: 23630963
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Passage through Ixodes scapularis ticks enhances the virulence of a weakly pathogenic isolate of Borrelia burgdorferi.
    Adusumilli S; Booth CJ; Anguita J; Fikrig E
    Infect Immun; 2010 Jan; 78(1):138-44. PubMed ID: 19822652
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Kitsou C; Pal U
    Front Cell Infect Microbiol; 2018; 8():176. PubMed ID: 29896452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzootic origins for clinical manifestations of Lyme borreliosis.
    Jahfari S; Krawczyk A; Coipan EC; Fonville M; Hovius JW; Sprong H; Takumi K
    Infect Genet Evol; 2017 Apr; 49():48-54. PubMed ID: 28040562
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions.
    Mason LM; Veerman CC; Geijtenbeek TB; Hovius JW
    Trends Parasitol; 2014 Feb; 30(2):95-103. PubMed ID: 24388562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Susceptibility of the black-legged tick, Ixodes scapularis, to the Lyme disease spirochete, Borrelia burgdorferi.
    Burgdorfer W; Gage KL
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Dec; 263(1-2):15-20. PubMed ID: 3577477
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prevention of Borrelia burgdorferi transmission in guinea pigs by tick immunity.
    Nazario S; Das S; de Silva AM; Deponte K; Marcantonio N; Anderson JF; Fish D; Fikrig E; Kantor FS
    Am J Trop Med Hyg; 1998 Jun; 58(6):780-5. PubMed ID: 9660463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction of the tick immune system with transmitted pathogens.
    Hajdušek O; Síma R; Ayllón N; Jalovecká M; Perner J; de la Fuente J; Kopáček P
    Front Cell Infect Microbiol; 2013; 3():26. PubMed ID: 23875177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences.
    Xu Q; McShan K; Liang FT
    Mol Microbiol; 2008 Jul; 69(1):15-29. PubMed ID: 18452586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal.
    Hoxmeier JC; Fleshman AC; Broeckling CD; Prenni JE; Dolan MC; Gage KL; Eisen L
    Sci Rep; 2017 Mar; 7():44394. PubMed ID: 28287618
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation of Borrelia burgdorferi from saliva of the tick vector, Ixodes scapularis.
    Ewing C; Scorpio A; Nelson DR; Mather TN
    J Clin Microbiol; 1994 Mar; 32(3):755-8. PubMed ID: 8195390
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complement evasion by Borrelia burgdorferi: it takes three to tango.
    de Taeye SW; Kreuk L; van Dam AP; Hovius JW; Schuijt TJ
    Trends Parasitol; 2013 Mar; 29(3):119-28. PubMed ID: 23298533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi.
    Dizij A; Kurtenbach K
    Parasite Immunol; 1995 Apr; 17(4):177-83. PubMed ID: 7624158
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential spirochetal infectivities to vector ticks of mice chronically infected by the agent of Lyme disease.
    Shih CM; Liu LP; Spielman A
    J Clin Microbiol; 1995 Dec; 33(12):3164-8. PubMed ID: 8586694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New Insights Into CRASP-Mediated Complement Evasion in the Lyme Disease Enzootic Cycle.
    Lin YP; Frye AM; Nowak TA; Kraiczy P
    Front Cell Infect Microbiol; 2020; 10():1. PubMed ID: 32083019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.