These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21612976)

  • 1. Novel metabolic pathways in Archaea.
    Sato T; Atomi H
    Curr Opin Microbiol; 2011 Jun; 14(3):307-14. PubMed ID: 21612976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The unique Entner-Doudoroff (ED) glycolysis pathway of glucose in archaea--a review].
    Liu T; Shen Y; Liu Q; Liu B
    Wei Sheng Wu Xue Bao; 2008 Aug; 48(8):1126-31. PubMed ID: 18956766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea.
    Siebers B; Schönheit P
    Curr Opin Microbiol; 2005 Dec; 8(6):695-705. PubMed ID: 16256419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The unique features of glycolytic pathways in Archaea.
    Verhees CH; Kengen SW; Tuininga JE; Schut GJ; Adams MW; De Vos WM; Van Der Oost J
    Biochem J; 2003 Oct; 375(Pt 2):231-46. PubMed ID: 12921536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism.
    Jahn U; Huber H; Eisenreich W; Hügler M; Fuchs G
    J Bacteriol; 2007 Jun; 189(11):4108-19. PubMed ID: 17400748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation.
    Bräsen C; Esser D; Rauch B; Siebers B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):89-175. PubMed ID: 24600042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archaeal type III RuBisCOs function in a pathway for AMP metabolism.
    Sato T; Atomi H; Imanaka T
    Science; 2007 Feb; 315(5814):1003-6. PubMed ID: 17303759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fructose metabolism in Chromohalobacter salexigens: interplay between the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways.
    Pastor JM; Borges N; Pagán JP; Castaño-Cerezo S; Csonka LN; Goodner BW; Reynolds KA; Gonçalves LG; Argandoña M; Nieto JJ; Vargas C; Bernal V; Cánovas M
    Microb Cell Fact; 2019 Aug; 18(1):134. PubMed ID: 31409414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga.
    Selig M; Xavier KB; Santos H; Schönheit P
    Arch Microbiol; 1997 Apr; 167(4):217-32. PubMed ID: 9075622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A look into the Archaeal genomes].
    Atomi H; Fukui T; Kanai T; Imanaka T
    Tanpakushitsu Kakusan Koso; 2009 Feb; 54(2):120-6. PubMed ID: 19205346
    [No Abstract]   [Full Text] [Related]  

  • 11. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.
    Berg IA; Kockelkorn D; Buckel W; Fuchs G
    Science; 2007 Dec; 318(5857):1782-6. PubMed ID: 18079405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism.
    Ronimus RS; Morgan HW
    Archaea; 2003 Oct; 1(3):199-221. PubMed ID: 15803666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique sugar metabolism and novel enzymes of hyperthermophilic archaea.
    Sakuraba H; Goda S; Ohshima T
    Chem Rec; 2004; 3(5):281-7. PubMed ID: 14762828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis and function of tRNA modifications in Archaea.
    Phillips G; de Crécy-Lagard V
    Curr Opin Microbiol; 2011 Jun; 14(3):335-41. PubMed ID: 21470902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Growth and carbohydrate metabolism of sulfobacilli].
    Karavaĭko GI; Krasil'nikova EN; Tsaplina IA; Bogdanova TI; Zakharchuk LM
    Mikrobiologiia; 2001; 70(3):293-9. PubMed ID: 11450449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of carbohydrate metabolic pathways.
    Romano AH; Conway T
    Res Microbiol; 1996; 147(6-7):448-55. PubMed ID: 9084754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis.
    Vorhölter FJ; Schneiker S; Goesmann A; Krause L; Bekel T; Kaiser O; Linke B; Patschkowski T; Rückert C; Schmid J; Sidhu VK; Sieber V; Tauch A; Watt SA; Weisshaar B; Becker A; Niehaus K; Pühler A
    J Biotechnol; 2008 Mar; 134(1-2):33-45. PubMed ID: 18304669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea.
    Chaban B; Voisin S; Kelly J; Logan SM; Jarrell KF
    Mol Microbiol; 2006 Jul; 61(1):259-68. PubMed ID: 16824110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence.
    Storbeck S; Rolfes S; Raux-Deery E; Warren MJ; Jahn D; Layer G
    Archaea; 2010 Dec; 2010():175050. PubMed ID: 21197080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoprenoid biosynthesis in Archaea--biochemical and evolutionary implications.
    Matsumi R; Atomi H; Driessen AJ; van der Oost J
    Res Microbiol; 2011 Jan; 162(1):39-52. PubMed ID: 21034816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.