These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 21613081)
1. Greater seasonal carbon gain across a broad temperature range contributes to the invasive potential of Phalaris arundinacea (Poaceae; reed canary grass) over the native sedge Carex stricta (Cyperaceae). He Z; Bentley LP; Holaday AS Am J Bot; 2011 Jan; 98(1):20-30. PubMed ID: 21613081 [TBL] [Abstract][Full Text] [Related]
2. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability. Holaday AS; Schwilk DW; Waring EF; Guvvala H; Griffin CM; Lewis OM J Plant Physiol; 2015 Apr; 177():20-29. PubMed ID: 25659333 [TBL] [Abstract][Full Text] [Related]
3. High growth temperatures and high soil nitrogen do not alter differences in CO Waring EF; Holaday AS Am J Bot; 2017 Jul; 104(7):999-1007. PubMed ID: 28743760 [TBL] [Abstract][Full Text] [Related]
4. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against Mårtensson LM; Carlsson G; Prade T; Kørup K; Lærke PE; Jensen ES Plant Physiol Biochem; 2017 Apr; 113():1-5. PubMed ID: 28152389 [TBL] [Abstract][Full Text] [Related]
5. Growth and foliar nitrogen status of four plant species exposed to atmospheric ammonia. Adrizal ; Patterson PH; Hulet RM; Bates RM J Environ Sci Health B; 2006; 41(6):1001-18. PubMed ID: 16977722 [TBL] [Abstract][Full Text] [Related]
6. Effects of light regime, temperature, and plant age on uptake of arsenic by Spartina pectinata and Carex stricta. Rofkar JR; Dwyer DF Int J Phytoremediation; 2011 Jul; 13(6):528-37. PubMed ID: 21972500 [TBL] [Abstract][Full Text] [Related]
7. Screening the wetland plant species Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc and comparison with Eriophorum angustifolium and Festuca rubra Merlin. Matthews DJ; Moran BM; Otte ML Environ Pollut; 2005 Mar; 134(2):343-51. PubMed ID: 15589661 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic parameters of a sedge-grass marsh as a big-leaf: effect of plant species composition. Mejdová M; Dušek J; Foltýnová L; Macálková L; Čížková H Sci Rep; 2021 Feb; 11(1):3723. PubMed ID: 33580095 [TBL] [Abstract][Full Text] [Related]
9. Carbon gain, allocation and storage in rhizomes in response to elevated atmospheric carbon dioxide and nutrient supply in a perennial C Kinmonth-Schultz H; Kim SH Funct Plant Biol; 2011 Oct; 38(10):797-807. PubMed ID: 32480937 [TBL] [Abstract][Full Text] [Related]
10. Seasonal changes in temperature response of photosynthesis and its contribution to annual carbon gain in Daphniphyllum humile, an evergreen understorey shrub. Katahata SI; Han Q; Naramoto M; Kakubari Y; Mukai Y Plant Biol (Stuttg); 2014 Mar; 16(2):345-53. PubMed ID: 23731172 [TBL] [Abstract][Full Text] [Related]
11. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Diaz-Espejo A; Nicolás E; Fernández JE Plant Cell Environ; 2007 Aug; 30(8):922-33. PubMed ID: 17617820 [TBL] [Abstract][Full Text] [Related]
12. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Tong C; Zhang L; Wang W; Gauci V; Marrs R; Liu B; Jia R; Zeng C Environ Res; 2011 Oct; 111(7):909-16. PubMed ID: 21704985 [TBL] [Abstract][Full Text] [Related]
13. Irrigation of three wetland species and a hyperaccumlating fern with arsenic-laden solutions: observations of growth, arsenic uptake, nutrient status, and chlorophyll content. Rofkar JR; Dwyer DF Int J Phytoremediation; 2013; 15(6):561-72. PubMed ID: 23819297 [TBL] [Abstract][Full Text] [Related]
14. Negative per capita effects of two invasive plants, Lythrum salicaria and Phalaris arundinacea, on the moth diversity of wetland communities. Schooler SS; McEvoy PB; Hammond P; Coombs EM Bull Entomol Res; 2009 Jun; 99(3):229-43. PubMed ID: 18947450 [TBL] [Abstract][Full Text] [Related]
15. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Maron JL; Elmendorf SC; Vilà M Evolution; 2007 Aug; 61(8):1912-24. PubMed ID: 17683433 [TBL] [Abstract][Full Text] [Related]
16. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Vymazal J; Svehla J; Kröpfelová L; Chrastný V Sci Total Environ; 2007 Jul; 380(1-3):154-62. PubMed ID: 17307232 [TBL] [Abstract][Full Text] [Related]
17. Accumulation and distribution of macroelements in the organs of Phalaris arundinacea L.: Implication for phytoremediation. Polechońska L; Klink A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(12):1385-91. PubMed ID: 25072770 [TBL] [Abstract][Full Text] [Related]
18. Photosynthetic responses of C3 and C4 species to seasonal water variability and competition. Niu S; Yuan Z; Zhang Y; Liu W; Zhang L; Huang J; Wan S J Exp Bot; 2005 Nov; 56(421):2867-76. PubMed ID: 16203757 [TBL] [Abstract][Full Text] [Related]
19. A wetland plant, Phalaris arundinacea, accumulates nitrogen and phosphorus during senescence. Huang X; Lei S; Wang G; Zeng B Environ Sci Pollut Res Int; 2020 Nov; 27(31):38928-38936. PubMed ID: 32638299 [TBL] [Abstract][Full Text] [Related]
20. Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae). Barth S; Jankowska MJ; Hodkinson TR; Vellani T; Klaas M BMC Res Notes; 2016 Mar; 9():184. PubMed ID: 27005474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]