These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 21613084)
1. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Hernández-Hernández T; Hernández HM; De-Nova JA; Puente R; Eguiarte LE; Magallón S Am J Bot; 2011 Jan; 98(1):44-61. PubMed ID: 21613084 [TBL] [Abstract][Full Text] [Related]
2. Molecular phylogeny of Gymnocalycium (Cactaceae): assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus. Demaio PH; Barfuss MH; Kiesling R; Till W; Chiapella JO Am J Bot; 2011 Nov; 98(11):1841-54. PubMed ID: 22012926 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/ matK and trnL-trnF sequences. Nyffeler R Am J Bot; 2002 Feb; 89(2):312-26. PubMed ID: 21669740 [TBL] [Abstract][Full Text] [Related]
4. An integrative approach to understanding the evolution and diversity of Copiapoa (Cactaceae), a threatened endemic Chilean genus from the Atacama Desert. Larridon I; Walter HE; Guerrero PC; Duarte M; Cisternas MA; Hernández CP; Bauters K; Asselman P; Goetghebeur P; Samain MS Am J Bot; 2015 Sep; 102(9):1506-20. PubMed ID: 26373974 [TBL] [Abstract][Full Text] [Related]
5. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae-Opuntioideae). Ritz CM; Reiker J; Charles G; Hoxey P; Hunt D; Lowry M; Stuppy W; Taylor N Mol Phylogenet Evol; 2012 Nov; 65(2):668-81. PubMed ID: 22877645 [TBL] [Abstract][Full Text] [Related]
6. Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora. Calvente A; Zappi DC; Forest F; Lohmann LG Mol Phylogenet Evol; 2011 Mar; 58(3):456-68. PubMed ID: 21236350 [TBL] [Abstract][Full Text] [Related]
7. Molecular phylogenetics of Echinopsis (Cactaceae): Polyphyly at all levels and convergent evolution of pollination modes and growth forms. Schlumpberger BO; Renner SS Am J Bot; 2012 Aug; 99(8):1335-49. PubMed ID: 22859654 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. Arias S; Terrazas T; Arreola-Nava HJ; Vázquez-Sánchez M; Cameron KM J Plant Res; 2005 Oct; 118(5):317-28. PubMed ID: 16143879 [TBL] [Abstract][Full Text] [Related]
9. What does it take to resolve relationships and to identify species with molecular markers? An example from the epiphytic Rhipsalideae (Cactaceae). Korotkova N; Borsch T; Quandt D; Taylor NP; Müller KF; Barthlott W Am J Bot; 2011 Sep; 98(9):1549-72. PubMed ID: 21900612 [TBL] [Abstract][Full Text] [Related]
10. Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Edwards EJ; Nyffeler R; Donoghue MJ Am J Bot; 2005 Jul; 92(7):1177-88. PubMed ID: 21646140 [TBL] [Abstract][Full Text] [Related]
11. A target Capture Probe Set Useful for Deep- and Shallow-Level Phylogenetic Studies in Cactaceae. Romeiro-Brito M; Telhe MC; Amaral DT; Franco FF; Moraes EM Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456513 [TBL] [Abstract][Full Text] [Related]
12. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae)--Taxonomy, biogeography and conflicts. Bräuchler C; Meimberg H; Heubl G Mol Phylogenet Evol; 2010 May; 55(2):501-23. PubMed ID: 20152913 [TBL] [Abstract][Full Text] [Related]
13. Phylogeny reconstruction in the Caesalpinieae grade (Leguminosae) based on duplicated copies of the sucrose synthase gene and plastid markers. Manzanilla V; Bruneau A Mol Phylogenet Evol; 2012 Oct; 65(1):149-62. PubMed ID: 22699157 [TBL] [Abstract][Full Text] [Related]
14. Determinate primary root growth as an adaptation to aridity in Cactaceae: towards an understanding of the evolution and genetic control of the trait. Shishkova S; Las Peñas ML; Napsucialy-Mendivil S; Matvienko M; Kozik A; Montiel J; Patiño A; Dubrovsky JG Ann Bot; 2013 Jul; 112(2):239-52. PubMed ID: 23666887 [TBL] [Abstract][Full Text] [Related]
15. A plastid DNA phylogeny of tribe Miliuseae: insights into relationships and character evolution in one of the most recalcitrant major clades of Annonaceae. Chaowasku T; Thomas DC; van der Ham RW; Smets EF; Mols JB; Chatrou LW Am J Bot; 2014 Apr; 101(4):691-709. PubMed ID: 24688057 [TBL] [Abstract][Full Text] [Related]
16. Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. Schulte K; Barfuss MH; Zizka G Mol Phylogenet Evol; 2009 May; 51(2):327-39. PubMed ID: 19236934 [TBL] [Abstract][Full Text] [Related]
17. A 10-gene phylogeny of Solanum section Herpystichum (Solanaceae) and a comparison of phylogenetic methods. Tepe EJ; Farruggia FT; Bohs L Am J Bot; 2011 Aug; 98(8):1356-65. PubMed ID: 21795733 [TBL] [Abstract][Full Text] [Related]
18. A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. Duangjai S; Samuel R; Munzinger J; Forest F; Wallnöfer B; Barfuss MH; Fischer G; Chase MW Mol Phylogenet Evol; 2009 Sep; 52(3):602-20. PubMed ID: 19427384 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic relationships of Ruteae (Rutaceae): new evidence from the chloroplast genome and comparisons with non-molecular data. Salvo G; Bacchetta G; Ghahremaninejad F; Conti E Mol Phylogenet Evol; 2008 Dec; 49(3):736-48. PubMed ID: 18824111 [TBL] [Abstract][Full Text] [Related]