BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 21613214)

  • 1. Biochemical analysis of the canonical model for the mammalian circadian clock.
    Ye R; Selby CP; Ozturk N; Annayev Y; Sancar A
    J Biol Chem; 2011 Jul; 286(29):25891-902. PubMed ID: 21613214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock.
    Ye R; Selby CP; Chiou YY; Ozkan-Dagliyan I; Gaddameedhi S; Sancar A
    Genes Dev; 2014 Sep; 28(18):1989-98. PubMed ID: 25228643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of the repressive phase of the mammalian circadian clock.
    Cao X; Yang Y; Selby CP; Liu Z; Sancar A
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of interactions among circadian clock proteins via surface plasmon resonance.
    Kepsutlu B; Kizilel R; Kizilel S
    J Mol Recognit; 2014 Jul; 27(7):458-69. PubMed ID: 24895278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner.
    Chiou YY; Yang Y; Rashid N; Ye R; Selby CP; Sancar A
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6072-E6079. PubMed ID: 27688755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of DNA-binding domains of CLOCK-BMAL1 complex for PER-dependent inhibition in circadian clock of mammalian cells.
    Otobe Y; Jeong EM; Ito S; Shinohara Y; Kurabayashi N; Aiba A; Fukada Y; Kim JK; Yoshitane H
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2316858121. PubMed ID: 38805270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular recognition revealed by the complex structure of human CLOCK-BMAL1 basic helix-loop-helix domains with E-box DNA.
    Wang Z; Wu Y; Li L; Su XD
    Cell Res; 2013 Feb; 23(2):213-24. PubMed ID: 23229515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex.
    Nangle SN; Rosensweig C; Koike N; Tei H; Takahashi JS; Green CB; Zheng N
    Elife; 2014 Aug; 3():e03674. PubMed ID: 25127877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism.
    Chen R; Schirmer A; Lee Y; Lee H; Kumar V; Yoo SH; Takahashi JS; Lee C
    Mol Cell; 2009 Nov; 36(3):417-30. PubMed ID: 19917250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Molecular mechanisms of circadian clock functioning].
    Karbovskyĭ LL; Minchenko DO; Garmash IaA; Minchenko OG
    Ukr Biokhim Zh (1999); 2011; 83(3):5-24. PubMed ID: 21888051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evolutionary hotspot defines functional differences between CRYPTOCHROMES.
    Rosensweig C; Reynolds KA; Gao P; Laothamatas I; Shan Y; Ranganathan R; Takahashi JS; Green CB
    Nat Commun; 2018 Mar; 9(1):1138. PubMed ID: 29556064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2.
    Yu W; Nomura M; Ikeda M
    Biochem Biophys Res Commun; 2002 Jan; 290(3):933-41. PubMed ID: 11798163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.
    Tamaru T; Hattori M; Honda K; Nakahata Y; Sassone-Corsi P; van der Horst GT; Ozawa T; Takamatsu K
    PLoS Biol; 2015; 13(11):e1002293. PubMed ID: 26562092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver.
    Rey G; Cesbron F; Rougemont J; Reinke H; Brunner M; Naef F
    PLoS Biol; 2011 Feb; 9(2):e1000595. PubMed ID: 21364973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein phosphatase 4 controls circadian clock dynamics by modulating CLOCK/BMAL1 activity.
    Klemz S; Wallach T; Korge S; Rosing M; Klemz R; Maier B; Fiorenza NC; Kaymak I; Fritzsche AK; Herzog ED; Stanewsky R; Kramer A
    Genes Dev; 2021 Aug; 35(15-16):1161-1174. PubMed ID: 34301769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock.
    Lee Y; Lee J; Kwon I; Nakajima Y; Ohmiya Y; Son GH; Lee KH; Kim K
    J Cell Sci; 2010 Oct; 123(Pt 20):3547-57. PubMed ID: 20930143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A molecular mechanism for circadian clock negative feedback.
    Duong HA; Robles MS; Knutti D; Weitz CJ
    Science; 2011 Jun; 332(6036):1436-9. PubMed ID: 21680841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function.
    Shi G; Xie P; Qu Z; Zhang Z; Dong Z; An Y; Xing L; Liu Z; Dong Y; Xu G; Yang L; Liu Y; Xu Y
    Cell Rep; 2016 Feb; 14(4):823-834. PubMed ID: 26776516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A positive role for PERIOD in mammalian circadian gene expression.
    Akashi M; Okamoto A; Tsuchiya Y; Todo T; Nishida E; Node K
    Cell Rep; 2014 May; 7(4):1056-64. PubMed ID: 24794436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals.
    Abe YO; Yoshitane H; Kim DW; Kawakami S; Koebis M; Nakao K; Aiba A; Kim JK; Fukada Y
    Nat Commun; 2022 Aug; 13(1):4652. PubMed ID: 35999195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.