BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21613307)

  • 41. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis.
    Liu H; Yang M; He ZG
    Sci Rep; 2016 Jun; 6():27489. PubMed ID: 27271013
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations.
    Giddey AD; de Kock E; Nakedi KC; Garnett S; Nel AJ; Soares NC; Blackburn JM
    Sci Rep; 2017 Mar; 7():43858. PubMed ID: 28262820
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis.
    Jin J; Zhang JY; Guo N; Sheng H; Li L; Liang JC; Wang XL; Li Y; Liu MY; Wu XP; Yu L
    Molecules; 2010 Oct; 15(11):7750-62. PubMed ID: 21042264
    [TBL] [Abstract][Full Text] [Related]  

  • 44. AraR, an L-Arabinose-Responding Transcription Factor, Negatively Regulates Resistance of Mycobacterium smegmatis to Isoniazid.
    Zhou L; He ZG; Li W
    Biochemistry (Mosc); 2019 May; 84(5):540-552. PubMed ID: 31234768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteasome Accessory Factor C (pafC) Is a novel gene Involved in Mycobacterium Intrinsic Resistance to broad-spectrum antibiotics--Fluoroquinolones.
    Li Q; Xie L; Long Q; Mao J; Li H; Zhou M; Xie J
    Sci Rep; 2015 Jul; 5():11910. PubMed ID: 26139381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis.
    Gröblacher B; Kunert O; Bucar F
    Bioorg Med Chem; 2012 Apr; 20(8):2701-6. PubMed ID: 22459211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis.
    Chen JM; German GJ; Alexander DC; Ren H; Tan T; Liu J
    J Bacteriol; 2006 Jan; 188(2):633-41. PubMed ID: 16385053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unique Mode of Cell Division by the Mycobacterial Genetic Resister Clones Emerging
    Jakkala K; Paul A; Pradhan A; Nair RR; Sharan D; Swaminath S; Ajitkumar P
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33208519
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cross-talk between the three furA orthologs in Mycobacterium smegmatis and the contribution to isoniazid resistance.
    Gao CH; Wei WP; Tao HL; Cai LK; Jia WZ; Hu L; Yang M
    J Biochem; 2019 Sep; 166(3):237-243. PubMed ID: 30993320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporal and intrinsic factors of rifampicin tolerance in mycobacteria.
    Richardson K; Bennion OT; Tan S; Hoang AN; Cokol M; Aldridge BB
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8302-7. PubMed ID: 27357669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel marRAB operon contributes to the rifampicin resistance in Mycobacterium smegmatis.
    Zhang H; Gao L; Zhang J; Li W; Yang M; Zhang H; Gao C; He ZG
    PLoS One; 2014; 9(8):e106016. PubMed ID: 25153492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification and characterization of a new intermediate in the ribosylative inactivation pathway of rifampin by Mycobacterium smegmatis.
    Imai T; Watanabe K; Mikami Y; Yazawa K; Ando A; Nagata Y; Morisaki N; Hashimoto Y; Furihata K; Dabbs ER
    Microb Drug Resist; 1999; 5(4):259-64. PubMed ID: 10647083
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A method for the enrichment, isolation and validation of Mycobacterium smegmatis population surviving in the presence of bactericidal concentrations of rifampicin and moxifloxacin.
    Pradhan A; Swaminath S; Jakkala K; Ajitkumar P
    FEMS Microbiol Lett; 2021 Jul; 368(14):. PubMed ID: 34240144
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutants of Mycobacterium smegmatis unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone.
    Tran SL; Rao M; Simmers C; Gebhard S; Olsson K; Cook GM
    Microbiology (Reading); 2005 Mar; 151(Pt 3):665-672. PubMed ID: 15758213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance.
    Chen Y; Yang F; Sun Z; Wang Q; Mi K; Deng H
    PLoS One; 2015; 10(6):e0127788. PubMed ID: 26035302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria.
    Padwal P; Bandyopadhyaya R; Mehra S
    Langmuir; 2014 Dec; 30(50):15266-76. PubMed ID: 25375643
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Growth and division mechanisms by which genetic resisters emerge from the rifampicin-surviving population of differentially antibiotic-susceptible mycobacterial subpopulations.
    Jakkala K; Paul A; Nair RR; Swaminath S; Pradhan A; Ajitkumar P
    Int J Mycobacteriol; 2022; 11(3):273-286. PubMed ID: 36260446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MmbR, a master transcription regulator that controls fatty acid β-oxidation genes in Mycolicibacterium smegmatis.
    Xu H; Su Z; Li W; Deng Y; He ZG
    Environ Microbiol; 2021 Feb; 23(2):1096-1114. PubMed ID: 32985741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance.
    Levin ME; Hatfull GF
    Mol Microbiol; 1993 Apr; 8(2):277-85. PubMed ID: 8316080
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Activation of the SigE-SigB signaling pathway by inhibition of the respiratory electron transport chain and its effect on rifampicin resistance in Mycobacterium smegmatis.
    Oh Y; Lee HI; Jeong JA; Kim S; Oh JI
    J Microbiol; 2022 Sep; 60(9):935-947. PubMed ID: 35913593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.