These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 2161350)
1. The toxicity of two Bacillus thuringiensis delta-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Wolfersberger MG Experientia; 1990 May; 46(5):475-7. PubMed ID: 2161350 [TBL] [Abstract][Full Text] [Related]
2. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Hofmann C; Vanderbruggen H; Höfte H; Van Rie J; Jansens S; Van Mellaert H Proc Natl Acad Sci U S A; 1988 Nov; 85(21):7844-8. PubMed ID: 2856194 [TBL] [Abstract][Full Text] [Related]
3. Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Rajamohan F; Alzate O; Cotrill JA; Curtiss A; Dean DH Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14338-43. PubMed ID: 8962052 [TBL] [Abstract][Full Text] [Related]
4. Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. Liang Y; Patel SS; Dean DH J Biol Chem; 1995 Oct; 270(42):24719-24. PubMed ID: 7559587 [TBL] [Abstract][Full Text] [Related]
5. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by protein blot analysis. Garczynski SF; Crim JW; Adang MJ Appl Environ Microbiol; 1991 Oct; 57(10):2816-20. PubMed ID: 1746942 [TBL] [Abstract][Full Text] [Related]
6. Detection of Choristoneura fumiferana brush border membrane-binding molecules specific to Bacillus thuringiensis delta-endotoxin by crossed affinity immunoelectrophoresis. Pang AS Biochem Biophys Res Commun; 1994 Mar; 199(3):1194-9. PubMed ID: 8147860 [TBL] [Abstract][Full Text] [Related]
7. Light microscope immunolocation of Bacillus thuringiensis kurstaki delta-endotoxin in the midgut and Malpighian tubules of the tobacco budworm, Heliothis virescens. Ryerse JS; Beck JR; Lavrik PB J Invertebr Pathol; 1990 Jul; 56(1):86-90. PubMed ID: 2165507 [TBL] [Abstract][Full Text] [Related]
8. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Van Rie J; Jansens S; Höfte H; Degheele D; Van Mellaert H Eur J Biochem; 1989 Dec; 186(1-2):239-47. PubMed ID: 2557209 [TBL] [Abstract][Full Text] [Related]
9. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. Valaitis AP J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544 [TBL] [Abstract][Full Text] [Related]
10. Interaction between Cry9Ca and two Cry1A delta-endotoxins from Bacillus thuringiensis in larval toxicity and binding to brush border membrane vesicles of the spruce budworm, Choristoneura fumiferana Clemens. Pang AS; Gringorten JL; van Frankenhuyzen K FEMS Microbiol Lett; 2002 Sep; 215(1):109-114. PubMed ID: 12393209 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of potassium-gradient-driven phenylalanine uptake in larval Lymantria dispar midgut by two Bacillus thuringiensis delta-endotoxins correlates with the activity of the toxins as gypsy moth larvicides. Wolfersberger MG J Exp Biol; 1991 Nov; 161():519-25. PubMed ID: 1661774 [No Abstract] [Full Text] [Related]
13. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistant larvae of Plutella xylostella. Masson L; Mazza A; Brousseau R; Tabashnik B J Biol Chem; 1995 May; 270(20):11887-96. PubMed ID: 7744839 [TBL] [Abstract][Full Text] [Related]
14. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Ballester V; Granero F; Tabashnik BE; Malvar T; Ferré J Appl Environ Microbiol; 1999 Apr; 65(4):1413-9. PubMed ID: 10103230 [TBL] [Abstract][Full Text] [Related]
15. Toxicity and receptor binding properties of a Bacillus thuringiensis CryIC toxin active against both lepidoptera and diptera. Abdul-Rauf M; Ellar DJ J Invertebr Pathol; 1999 Jan; 73(1):52-8. PubMed ID: 9878290 [TBL] [Abstract][Full Text] [Related]
16. Binding and toxicity of Bacillus thuringiensis protein Cry1C to susceptible and resistant diamondback moth (Lepidoptera: Plutellidae). Liu YB; Tabashnik BE; Masson L; Escriche B; Ferré J J Econ Entomol; 2000 Feb; 93(1):1-6. PubMed ID: 14658503 [TBL] [Abstract][Full Text] [Related]
18. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Lee MK; Rajamohan F; Gould F; Dean DH Appl Environ Microbiol; 1995 Nov; 61(11):3836-42. PubMed ID: 8526494 [TBL] [Abstract][Full Text] [Related]
19. Differential inhibition by Bacillus thuringiensis delta endotoxin of leucine and aspartic acid uptake into BBMV from midgut of Manduca sexta. Reuveni M; Dunn PE Biochem Biophys Res Commun; 1991 Dec; 181(3):1089-93. PubMed ID: 1662492 [TBL] [Abstract][Full Text] [Related]
20. Ion channels induced in planar lipid bilayers by the Bacillus thuringiensis toxin Cry1Aa in the presence of gypsy moth (Lymantria dispar) brush border membrane. Peyronnet O; Vachon V; Schwartz JL; Laprade R J Membr Biol; 2001 Nov; 184(1):45-54. PubMed ID: 11687877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]