BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21613515)

  • 1. Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis.
    Adamo SA; Lovett MM
    J Exp Biol; 2011 Jun; 214(Pt 12):1997-2004. PubMed ID: 21613515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity and disease resistance in the cricket Gryllus texensis.
    Adamo SA
    J Insect Physiol; 2004; 50(2-3):209-16. PubMed ID: 15019523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects.
    Fedorka KM; Copeland EK; Winterhalter WE
    J Exp Biol; 2013 Nov; 216(Pt 21):4005-10. PubMed ID: 23868839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Females gain survival benefits from immune-boosting ejaculates.
    Worthington AM; Kelly CD
    Evolution; 2016 Apr; 70(4):928-33. PubMed ID: 26920335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate change and temperate zone insects: the tyranny of thermodynamics meets the world of limited resources.
    Adamo SA; Baker JL; Lovett MM; Wilson G
    Environ Entomol; 2012 Dec; 41(6):1644-52. PubMed ID: 23321114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The specificity of behavioral fever in the cricket Acheta domesticus.
    Adamo SA
    J Parasitol; 1998 Jun; 84(3):529-33. PubMed ID: 9645851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why should an immune response activate the stress response? Insights from the insects (the cricket Gryllus texensis).
    Adamo SA
    Brain Behav Immun; 2010 Feb; 24(2):194-200. PubMed ID: 19679179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change.
    Dahlhoff EP; Fearnley SL; Bruce DA; Gibbs AG; Stoneking R; McMillan DM; Deiner K; Smiley JT; Rank NE
    Physiol Biochem Zool; 2008; 81(6):718-32. PubMed ID: 18956974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Stakes Decision-Making by Female Crickets (
    Miyashita A; Lee TYM; Adamo SA
    Physiol Biochem Zool; 2020; 93(6):450-465. PubMed ID: 33147114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunity for nothing and the eggs for free: Apparent lack of both physiological trade-offs and terminal reproductive investment in female crickets (Gryllus texensis).
    Miyashita A; Lee TYM; McMillan LE; Easy R; Adamo SA
    PLoS One; 2019; 14(5):e0209957. PubMed ID: 31091239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature and moisture on Mormon cricket reproduction with implications for responses to climate change.
    Srygley RB
    J Insect Physiol; 2014 Jun; 65():57-62. PubMed ID: 24831180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of the insect immune system to three different immune challenges.
    Charles HM; Killian KA
    J Insect Physiol; 2015 Oct; 81():97-108. PubMed ID: 26164746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What comes first, the zebra finch or the egg: temperature-dependent reproductive, physiological and behavioural plasticity in egg-laying zebra finches.
    Salvante KG; Walzem RL; Williams TD
    J Exp Biol; 2007 Apr; 210(Pt 8):1325-34. PubMed ID: 17401116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Give 'til it hurts: trade-offs between immunity and male reproductive effort in the decorated cricket, Gryllodes sigillatus.
    Gershman SN; Barnett CA; Pettinger AM; Weddle CB; Hunt J; Sakaluk SK
    J Evol Biol; 2010 Apr; 23(4):829-39. PubMed ID: 20210833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish.
    Jiravanichpaisal P; Söderhäll K; Söderhäll I
    Fish Shellfish Immunol; 2004 Sep; 17(3):265-75. PubMed ID: 15276606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in immune effort of male field crickets infested with mobile parasitoid larvae.
    Bailey NW; Zuk M
    J Insect Physiol; 2008 Jan; 54(1):96-104. PubMed ID: 17910888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex-specific life history responses to nymphal diet quality and immune status in a field cricket.
    Kelly CD; Neyer AA; Gress BE
    J Evol Biol; 2014 Feb; 27(2):381-90. PubMed ID: 24372962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive effects of enhanced ambient ultraviolet B radiation and increased temperature on immune function, growth and physiological condition of juvenile (parr) Atlantic Salmon, Salmo salar.
    Jokinen IE; Salo HM; Markkula E; Rikalainen K; Arts MT; Browman HI
    Fish Shellfish Immunol; 2011 Jan; 30(1):102-8. PubMed ID: 20883792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket.
    McNamara KB; van Lieshout E; Simmons LW
    J Evol Biol; 2014 Jun; 27(6):1020-8. PubMed ID: 24750259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved features of chronic stress across phyla: the effects of long-term stress on behavior and the concentration of the neurohormone octopamine in the cricket, Gryllus texensis.
    Adamo SA; Baker JL
    Horm Behav; 2011 Nov; 60(5):478-83. PubMed ID: 21824475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.