These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21613567)

  • 21. Sequential regulation of developmental events during polar morphogenesis in Caulobacter crescentus: assembly of pili on swarmer cells requires cell separation.
    Sommer JM; Newton A
    J Bacteriol; 1988 Jan; 170(1):409-15. PubMed ID: 2891681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of polar morphogenesis in Caulobacter crescentus.
    Fukuda A; Asada M; Koyasu S; Yoshida H; Yaginuma K; Okada Y
    J Bacteriol; 1981 Jan; 145(1):559-72. PubMed ID: 6109706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacteriophage 7-7-1 adsorbs to the complex flagella of Rhizobium lupini H13-3.
    Lotz W; Acker G; Schmitt R
    J Gen Virol; 1977 Jan; 34(1):9-17. PubMed ID: 833579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and cell cycle control of a novel pilus system in Caulobacter crescentus.
    Skerker JM; Shapiro L
    EMBO J; 2000 Jul; 19(13):3223-34. PubMed ID: 10880436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-gene tuning of Caulobacter cell cycle period and noise, swarming motility, and surface adhesion.
    Lin Y; Crosson S; Scherer NF
    Mol Syst Biol; 2010 Dec; 6():445. PubMed ID: 21179017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete genome sequence of Caulobacter crescentus bacteriophage φCbK.
    Panis G; Lambert C; Viollier PH
    J Virol; 2012 Sep; 86(18):10234-5. PubMed ID: 22923796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A lytic transglycosylase homologue, PleA, is required for the assembly of pili and the flagellum at the Caulobacter crescentus cell pole.
    Viollier PH; Shapiro L
    Mol Microbiol; 2003 Jul; 49(2):331-45. PubMed ID: 12828633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding the shapes of bacteria just got more complicated.
    Beveridge TJ
    Mol Microbiol; 2006 Oct; 62(1):1-4. PubMed ID: 16987172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of surface adhesion in Caulobacter crescentus.
    Bodenmiller D; Toh E; Brun YV
    J Bacteriol; 2004 Mar; 186(5):1438-47. PubMed ID: 14973013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. More than Rotating Flagella: Lipopolysaccharide as a Secondary Receptor for Flagellotropic Phage 7-7-1.
    Gonzalez F; Helm RF; Broadway KM; Scharf BE
    J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30012730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Location and architecture of the Caulobacter crescentus chemoreceptor array.
    Briegel A; Ding HJ; Li Z; Werner J; Gitai Z; Dias DP; Jensen RB; Jensen GJ
    Mol Microbiol; 2008 Jul; 69(1):30-41. PubMed ID: 18363791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation.
    Kanbe M; Shibata S; Umino Y; Jenal U; Aizawa SI
    Microbiology (Reading); 2005 Feb; 151(Pt 2):433-438. PubMed ID: 15699192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The genetic basis of laboratory adaptation in Caulobacter crescentus.
    Marks ME; Castro-Rojas CM; Teiling C; Du L; Kapatral V; Walunas TL; Crosson S
    J Bacteriol; 2010 Jul; 192(14):3678-88. PubMed ID: 20472802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ability of flagellum-specific Proteus vulgaris bacteriophage PV22 to interact with Campylobacter jejuni flagella in culture.
    Zhilenkov EL; Popova VM; Popov DV; Zavalsky LY; Svetoch EA; Stern NJ; Seal BS
    Virol J; 2006 Jun; 3():50. PubMed ID: 16803630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Caulobacter crescentus phage phiCbK: genomics of a canonical phage.
    Gill JJ; Berry JD; Russell WK; Lessor L; Escobar-Garcia DA; Hernandez D; Kane A; Keene J; Maddox M; Martin R; Mohan S; Thorn AM; Russell DH; Young R
    BMC Genomics; 2012 Oct; 13():542. PubMed ID: 23050599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Localization of surface structures during procaryotic differentiation: role of cell division in Caulobacter crescentus.
    Huguenel ED; Newton A
    Differentiation; 1982; 21(2):71-8. PubMed ID: 7084571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of proteins associated with two diverse Caulobacter phicbkvirus particles.
    Wilson K; Zhu F; Zheng R; Chen S; Ely B
    Arch Virol; 2020 Sep; 165(9):1995-2002. PubMed ID: 32588241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrastructural analysis of bacteriophage Φ29 during infection of Bacillus subtilis.
    Farley MM; Tu J; Kearns DB; Molineux IJ; Liu J
    J Struct Biol; 2017 Feb; 197(2):163-171. PubMed ID: 27480510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of three different bacteriophage from mesophilic Aeromonas sp. that use different types of monopolar flagella as their primary receptor.
    Rubires X; Merino S; Aguilar A; Merceè Nogueras M; Tomaès JM
    FEMS Microbiol Lett; 1998 Apr; 161(1):53-7. PubMed ID: 24895749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic Diversity of Type B3 Bacteriophages of Caulobacter crescentus.
    Ash KT; Drake KM; Gibbs WS; Ely B
    Curr Microbiol; 2017 Jul; 74(7):779-786. PubMed ID: 28393265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.