BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1000 related articles for article (PubMed ID: 21613623)

  • 1. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target.
    Yu YJ; Zhang Y; Kenrick M; Hoyte K; Luk W; Lu Y; Atwal J; Elliott JM; Prabhu S; Watts RJ; Dennis MS
    Sci Transl Med; 2011 May; 3(84):84ra44. PubMed ID: 21613623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates.
    Yu YJ; Atwal JK; Zhang Y; Tong RK; Wildsmith KR; Tan C; Bien-Ly N; Hersom M; Maloney JA; Meilandt WJ; Bumbaca D; Gadkar K; Hoyte K; Luk W; Lu Y; Ernst JA; Scearce-Levie K; Couch JA; Dennis MS; Watts RJ
    Sci Transl Med; 2014 Nov; 6(261):261ra154. PubMed ID: 25378646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain.
    Gadkar K; Yadav DB; Zuchero JY; Couch JA; Kanodia J; Kenrick MK; Atwal JK; Dennis MS; Prabhu S; Watts RJ; Joseph SB; Ramanujan S
    Eur J Pharm Biopharm; 2016 Apr; 101():53-61. PubMed ID: 26820920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo.
    Atwal JK; Chen Y; Chiu C; Mortensen DL; Meilandt WJ; Liu Y; Heise CE; Hoyte K; Luk W; Lu Y; Peng K; Wu P; Rouge L; Zhang Y; Lazarus RA; Scearce-Levie K; Wang W; Wu Y; Tessier-Lavigne M; Watts RJ
    Sci Transl Med; 2011 May; 3(84):84ra43. PubMed ID: 21613622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier.
    Couch JA; Yu YJ; Zhang Y; Tarrant JM; Fuji RN; Meilandt WJ; Solanoy H; Tong RK; Hoyte K; Luk W; Lu Y; Gadkar K; Prabhu S; Ordonia BA; Nguyen Q; Lin Y; Lin Z; Balazs M; Scearce-Levie K; Ernst JA; Dennis MS; Watts RJ
    Sci Transl Med; 2013 May; 5(183):183ra57, 1-12. PubMed ID: 23636093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants.
    Bien-Ly N; Yu YJ; Bumbaca D; Elstrott J; Boswell CA; Zhang Y; Luk W; Lu Y; Dennis MS; Weimer RM; Chung I; Watts RJ
    J Exp Med; 2014 Feb; 211(2):233-44. PubMed ID: 24470444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle.
    Niewoehner J; Bohrmann B; Collin L; Urich E; Sade H; Maier P; Rueger P; Stracke JO; Lau W; Tissot AC; Loetscher H; Ghosh A; Freskgård PO
    Neuron; 2014 Jan; 81(1):49-60. PubMed ID: 24411731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic antibodies for brain disorders.
    Paul SM
    Sci Transl Med; 2011 May; 3(84):84ps20. PubMed ID: 21613621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the transcytosis of an anti-transferrin receptor antibody with a Fab' cargo across the blood-brain barrier in mice.
    Manich G; Cabezón I; del Valle J; Duran-Vilaregut J; Camins A; Pallàs M; Pelegrí C; Vilaplana J
    Eur J Pharm Sci; 2013 Jul; 49(4):556-64. PubMed ID: 23748097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.
    Clark AJ; Davis ME
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12486-91. PubMed ID: 26392563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor.
    Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC
    Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity.
    Haqqani AS; Thom G; Burrell M; Delaney CE; Brunette E; Baumann E; Sodja C; Jezierski A; Webster C; Stanimirovic DB
    J Neurochem; 2018 Sep; 146(6):735-752. PubMed ID: 29877588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse.
    Lee HJ; Engelhardt B; Lesley J; Bickel U; Pardridge WM
    J Pharmacol Exp Ther; 2000 Mar; 292(3):1048-52. PubMed ID: 10688622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetics, biodistribution and brain retention of a bispecific antibody-based PET radioligand for imaging of amyloid-β.
    Sehlin D; Fang XT; Meier SR; Jansson M; Syvänen S
    Sci Rep; 2017 Dec; 7(1):17254. PubMed ID: 29222502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing neonatal Fc receptor binding enhances clearance and brain-to-blood ratio of TfR-delivered bispecific amyloid-β antibody.
    Schlein E; Andersson KG; Dallas T; Syvänen S; Sehlin D
    MAbs; 2024; 16(1):2339337. PubMed ID: 38634473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disaggregation of amyloid plaque in brain of Alzheimer's disease transgenic mice with daily subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the Abeta amyloid peptide.
    Sumbria RK; Hui EK; Lu JZ; Boado RJ; Pardridge WM
    Mol Pharm; 2013 Sep; 10(9):3507-13. PubMed ID: 23924247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective Design of Anti-Transferrin Receptor Bispecific Antibodies for Optimal Delivery into the Human Brain.
    Kanodia JS; Gadkar K; Bumbaca D; Zhang Y; Tong RK; Luk W; Hoyte K; Lu Y; Wildsmith KR; Couch JA; Watts RJ; Dennis MS; Ernst JA; Scearce-Levie K; Atwal JK; Ramanujan S; Joseph S
    CPT Pharmacometrics Syst Pharmacol; 2016 May; 5(5):283-91. PubMed ID: 27299941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration.
    Karaoglu Hanzatian D; Schwartz A; Gizatullin F; Erickson J; Deng K; Villanueva R; Stedman C; Harris C; Ghayur T; Goodearl A
    MAbs; 2018 Jul; 10(5):765-777. PubMed ID: 29771629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain pharmacokinetics of mono- and bispecific amyloid-β antibodies in wild-type and Alzheimer's disease mice measured by high cut-off microdialysis.
    Julku U; Xiong M; Wik E; Roshanbin S; Sehlin D; Syvänen S
    Fluids Barriers CNS; 2022 Dec; 19(1):99. PubMed ID: 36510227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitope-dependent effects of Beta-amyloid antibodies on Beta-amyloid clearance in an in vitro model of the blood-brain barrier.
    Bachmeier CJ; Beaulieu-Abdelahad D; Mullan MJ; Paris D
    Microcirculation; 2011 Jul; 18(5):373-9. PubMed ID: 21418385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.