These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 21613685)

  • 41. Enhancing the conductivity of transparent graphene films via doping.
    Kim KK; Reina A; Shi Y; Park H; Li LJ; Lee YH; Kong J
    Nanotechnology; 2010 Jul; 21(28):285205. PubMed ID: 20585167
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemical vapor deposition synthesis and Raman spectroscopic characterization of large-area graphene sheets.
    Liao CD; Lu YY; Tamalampudi SR; Cheng HC; Chen YT
    J Phys Chem A; 2013 Oct; 117(39):9454-61. PubMed ID: 23461419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of disorder on the optical properties of CVD grown polycrystalline graphene.
    Podila R; Anand B; Spear JT; Puneet P; Philip R; Sai SS; Rao AM
    Nanoscale; 2012 Mar; 4(5):1770-5. PubMed ID: 22307891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity.
    Lobo SM; Liu ZJ; Yu NC; Humphries S; Ahmed M; Cosman ER; Lenkinski RE; Goldberg W; Goldberg SN
    Int J Hyperthermia; 2005 May; 21(3):199-213. PubMed ID: 16019848
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Crystal structure, phase, and electrical conductivity of nanocrystalline W₀.₉₅Ti(₀.₀₅)O₃ thin films.
    Kalidindi NR; Manciu FS; Ramana CV
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):863-8. PubMed ID: 21323357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks.
    Kahng YH; Lee S; Choe M; Jo G; Park W; Yoon J; Hong WK; Cho CH; Lee BH; Lee T
    Nanotechnology; 2011 Jan; 22(4):045706. PubMed ID: 21169664
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Double-Wall Nanotubes and Graphene Nanoplatelets for Hybrid Conductive Adhesives with Enhanced Thermal and Electrical Conductivity.
    Messina E; Leone N; Foti A; Di Marco G; Riccucci C; Di Carlo G; Di Maggio F; Cassata A; Gargano L; D'Andrea C; Fazio B; Maragò OM; Robba B; Vasi C; Ingo GM; Gucciardi PG
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23244-59. PubMed ID: 27538099
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers.
    Lin J; Penchev M; Wang G; Paul RK; Zhong J; Jing X; Ozkan M; Ozkan CS
    Small; 2010 Nov; 6(21):2448-52. PubMed ID: 20878792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal conductivity of graphene in corbino membrane geometry.
    Faugeras C; Faugeras B; Orlita M; Potemski M; Nair RR; Geim AK
    ACS Nano; 2010 Apr; 4(4):1889-92. PubMed ID: 20218666
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI.
    Yesinowski JP; Ladouceur HD; Purdy AP; Miller JB
    J Chem Phys; 2010 Dec; 133(23):234509. PubMed ID: 21186877
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils.
    Zhang B; Lee WH; Piner R; Kholmanov I; Wu Y; Li H; Ji H; Ruoff RS
    ACS Nano; 2012 Mar; 6(3):2471-6. PubMed ID: 22339048
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors.
    Liu W; Jackson BL; Zhu J; Miao CQ; Chung CH; Park YJ; Sun K; Woo J; Xie YH
    ACS Nano; 2010 Jul; 4(7):3927-32. PubMed ID: 20536162
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temperature Dependence of Thermal Conductivity of Giant-Scale Supported Monolayer Graphene.
    Liu J; Li P; Xu S; Xie Y; Wang Q; Ma L
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014664
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition.
    Lee D; Kwon GD; Kim JH; Moyen E; Lee YH; Baik S; Pribat D
    Nanoscale; 2014 Nov; 6(21):12943-51. PubMed ID: 25233143
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intergrain Diffusion of Carbon Radical for Wafer-Scale, Direct Growth of Graphene on Silicon-Based Dielectrics.
    Nguyen P; Behura SK; Seacrist MR; Berry V
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26517-26525. PubMed ID: 30009598
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transferless Inverted Graphene/Silicon Heterostructures Prepared by Plasma-Enhanced Chemical Vapor Deposition of Amorphous Silicon on CVD Graphene.
    Müller M; Bouša M; Hájková Z; Ledinský M; Fejfar A; Drogowska-Horná K; Kalbáč M; Frank AO
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32213885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures.
    Chen W; Yan L
    Nanoscale; 2011 Aug; 3(8):3132-7. PubMed ID: 21698339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition.
    Xue Y; Wu B; Jiang L; Guo Y; Huang L; Chen J; Tan J; Geng D; Luo B; Hu W; Yu G; Liu Y
    J Am Chem Soc; 2012 Jul; 134(27):11060-3. PubMed ID: 22721268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Annealing and polycrystallinity effects on the thermal conductivity of supported CVD graphene monolayers.
    Raja SN; Osenberg D; Choi K; Park HG; Poulikakos D
    Nanoscale; 2017 Oct; 9(40):15515-15524. PubMed ID: 28980698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.