These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21613707)

  • 1. A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells.
    Paschos O; Kunze J; Stimming U; Maglia F
    J Phys Condens Matter; 2011 Jun; 23(23):234110. PubMed ID: 21613707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonhumidified intermediate temperature fuel cells using protic ionic liquids.
    Lee SY; Ogawa A; Kanno M; Nakamoto H; Yasuda T; Watanabe M
    J Am Chem Soc; 2010 Jul; 132(28):9764-73. PubMed ID: 20578771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediate temperature solid oxide fuel cells.
    Brett DJ; Atkinson A; Brandon NP; Skinner SJ
    Chem Soc Rev; 2008 Aug; 37(8):1568-78. PubMed ID: 18648682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.
    Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW
    Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing fast oxide-ion conductors based on La2Mo2O9.
    Lacorre P; Goutenoire F; Bohnke O; Retoux R; Laligant Y
    Nature; 2000 Apr; 404(6780):856-8. PubMed ID: 10786788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lowering the temperature of solid oxide fuel cells.
    Wachsman ED; Lee KT
    Science; 2011 Nov; 334(6058):935-9. PubMed ID: 22096189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anhydrous proton-conducting polymeric electrolytes for fuel cells.
    Narayanan SR; Yen SP; Liu L; Greenbaum SG
    J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid acids as fuel cell electrolytes.
    Haile SM; Boysen DA; Chisholm CR; Merle RB
    Nature; 2001 Apr; 410(6831):910-3. PubMed ID: 11309611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm(-2) at 550 °C.
    Lee JG; Park JH; Shul YG
    Nat Commun; 2014 Jun; 5():4045. PubMed ID: 24893929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring disorder and dimensionality: strategies for improved solid oxide fuel cell electrolytes.
    Garcia-Barriocanal J; Rivera-Calzada A; Varela M; Sefrioui Z; Díaz-Guillén MR; Moreno KJ; Díaz-Guillén JA; Iborra E; Fuentes AF; Pennycook SJ; Leon C; Santamaria J
    Chemphyschem; 2009 May; 10(7):1003-11. PubMed ID: 19330781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A density functional study of defect migration in gadolinium doped ceria.
    Dholabhai PP; Adams JB; Crozier P; Sharma R
    Phys Chem Chem Phys; 2010 Jul; 12(28):7904-10. PubMed ID: 20502831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel proton conductor of imidazole-aluminium phosphate hybrids in the solid state.
    Nakayama M; Sugiura Y; Hayakawa T; Nogami M
    Phys Chem Chem Phys; 2011 May; 13(20):9439-44. PubMed ID: 21479326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectroscopy as a probe of temperature and oxidation state for gadolinium-doped ceria used in solid oxide fuel cells.
    Maher RC; Cohen LF; Lohsoontorn P; Brett DJ; Brandon NP
    J Phys Chem A; 2008 Feb; 112(7):1497-501. PubMed ID: 18225868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites.
    Yamada M; Honma I
    Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells.
    Fabbri E; Pergolesi D; Traversa E
    Sci Technol Adv Mater; 2010 Aug; 11(4):044301. PubMed ID: 27877342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest.
    Asensio JA; Sánchez EM; Gómez-Romero P
    Chem Soc Rev; 2010 Aug; 39(8):3210-39. PubMed ID: 20577662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lowering grain boundary resistance of BaZr(0.8)Y(0.2)O(3-δ) with LiNO3 sintering-aid improves proton conductivity for fuel cell operation.
    Sun Z; Fabbri E; Bi L; Traversa E
    Phys Chem Chem Phys; 2011 May; 13(17):7692-700. PubMed ID: 21103585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells.
    Li B; Zhang J; Kaspar T; Shutthanandan V; Ewing RC; Lian J
    Phys Chem Chem Phys; 2013 Jan; 15(4):1296-301. PubMed ID: 23232452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.