These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 21613707)
21. New anhydrous proton exchange membrane for intermediate temperature proton exchange membrane fuel cells. Sun B; Song H; Qiu X; Zhu W Chemphyschem; 2011 Apr; 12(6):1196-201. PubMed ID: 21472959 [TBL] [Abstract][Full Text] [Related]
22. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Zeng J; Zhou Y; Li L; Jiang SP Phys Chem Chem Phys; 2011 Jun; 13(21):10249-57. PubMed ID: 21541370 [TBL] [Abstract][Full Text] [Related]
23. A study on electric conductivity of phosphoric acid supported on nano-pore rice husk silica in H2/Pt/H3PO4 / RHS/Pt/O2 fuel cells. Hwang MJ; Lee SY; Han CS J Nanosci Nanotechnol; 2006 Nov; 6(11):3491-3. PubMed ID: 17252796 [TBL] [Abstract][Full Text] [Related]
24. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Fabbri E; Pergolesi D; Traversa E Sci Technol Adv Mater; 2010 Aug; 11(4):044301. PubMed ID: 27877342 [TBL] [Abstract][Full Text] [Related]
26. Zirconia- and ceria-based electrolytes for fuel cell applications: critical advancements toward sustainable and clean energy production. Maiti TK; Majhi J; Maiti SK; Singh J; Dixit P; Rohilla T; Ghosh S; Bhushan S; Chattopadhyay S Environ Sci Pollut Res Int; 2022 Sep; 29(43):64489-64512. PubMed ID: 35864400 [TBL] [Abstract][Full Text] [Related]
27. Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. Varcoe JR Phys Chem Chem Phys; 2007 Mar; 9(12):1479-86. PubMed ID: 17356755 [TBL] [Abstract][Full Text] [Related]
28. Investigation of proton dynamics and the proton transport pathway in choline dihydrogen phosphate using solid-state NMR. Cahill LS; Rana UA; Forsyth M; Smith ME Phys Chem Chem Phys; 2010; 12(20):5431-8. PubMed ID: 20376404 [TBL] [Abstract][Full Text] [Related]
29. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Bae K; Jang DY; Choi HJ; Kim D; Hong J; Kim BK; Lee JH; Son JW; Shim JH Nat Commun; 2017 Feb; 8():14553. PubMed ID: 28230080 [TBL] [Abstract][Full Text] [Related]
30. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. Miyatake K; Chikashige Y; Higuchi E; Watanabe M J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469 [TBL] [Abstract][Full Text] [Related]
31. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Duan C; Tong J; Shang M; Nikodemski S; Sanders M; Ricote S; Almansoori A; O'Hayre R Science; 2015 Sep; 349(6254):1321-6. PubMed ID: 26217064 [TBL] [Abstract][Full Text] [Related]
32. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity. Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129 [TBL] [Abstract][Full Text] [Related]
33. High-performance solid Acid fuel cells through humidity stabilization. Boysen DA; Uda T; Chisholm CR; Haile SM Science; 2004 Jan; 303(5654):68-70. PubMed ID: 14631049 [TBL] [Abstract][Full Text] [Related]
34. Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized nafion 117 for high-temperature fuel cells. Di Noto V; Negro E; Sanchez JY; Iojoiu C J Am Chem Soc; 2010 Feb; 132(7):2183-95. PubMed ID: 20102239 [TBL] [Abstract][Full Text] [Related]
35. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer. Li Y; Wang S; Su PC Sci Rep; 2016 Feb; 6():22369. PubMed ID: 26928192 [TBL] [Abstract][Full Text] [Related]
36. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Malavasi L; Fisher CA; Islam MS Chem Soc Rev; 2010 Nov; 39(11):4370-87. PubMed ID: 20848015 [TBL] [Abstract][Full Text] [Related]
37. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers. Kim YS; Pivovar BS Annu Rev Chem Biomol Eng; 2010; 1():123-48. PubMed ID: 22432576 [TBL] [Abstract][Full Text] [Related]
38. Performance of PrBaCo2O(5+delta) as a proton-conducting solid-oxide fuel cell cathode. Lin Y; Ran R; Zhang C; Cai R; Shao Z J Phys Chem A; 2010 Mar; 114(11):3764-72. PubMed ID: 19594122 [TBL] [Abstract][Full Text] [Related]
39. Electrical and microstructural characterization of ceramic gadolinium-doped ceria electrolytes for ITSOFCs by sol-gel route. Accardo G; Ferone C; Cioffi R; Frattini D; Spiridigliozzi L; Dell'Agli G J Appl Biomater Funct Mater; 2016 Apr; 14(1):e35-41. PubMed ID: 26952587 [TBL] [Abstract][Full Text] [Related]
40. A Stable and Efficient Cathode for Fluorine-Containing Proton-Conducting Solid Oxide Fuel Cells. Xie Y; Shi N; Huan D; Tan W; Zhu J; Zheng X; Pan H; Peng R; Xia C ChemSusChem; 2018 Oct; 11(19):3423-3430. PubMed ID: 30058140 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]