BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21614700)

  • 1. A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in gram-positive and gram-negative species.
    Nithya C; Devi MG; Karutha Pandian S
    Biofouling; 2011 May; 27(5):519-28. PubMed ID: 21614700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1.
    Nithya C; Begum MF; Pandian SK
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):341-58. PubMed ID: 20665017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp.
    Nithya C; Pandian SK
    Arch Microbiol; 2010 Oct; 192(10):843-54. PubMed ID: 20697692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1.
    Sriram MI; Kalishwaralal K; Deepak V; Gracerosepat R; Srisakthi K; Gurunathan S
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):174-81. PubMed ID: 21458961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The isolation, purification and biological activity of a novel antibacterial compound produced by Pseudomonas stutzeri.
    Uzair B; Ahmed N; Ahmad VU; Mohammad FV; Edwards DH
    FEMS Microbiol Lett; 2008 Feb; 279(2):243-50. PubMed ID: 18093138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of aryl 2-aminoimidazoles as biofilm inhibitors in Gram-negative bacteria.
    Bunders CA; Richards JJ; Melander C
    Bioorg Med Chem Lett; 2010 Jun; 20(12):3797-800. PubMed ID: 20466544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba.
    Islam B; Khan SN; Haque I; Alam M; Mushfiq M; Khan AU
    J Antimicrob Chemother; 2008 Oct; 62(4):751-7. PubMed ID: 18565974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The antifouling potentiality of galactosamine characterized from Vibrio vulnificus exopolysaccharide.
    Kim M; Park JM; Um HJ; Lee KH; Kim H; Min J; Kim YH
    Biofouling; 2011 Sep; 27(8):851-7. PubMed ID: 21827336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp.
    Mondol MA; Kim JH; Lee HS; Lee YJ; Shin HJ
    Bioorg Med Chem Lett; 2011 Jun; 21(12):3832-5. PubMed ID: 21570834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.
    Rivardo F; Turner RJ; Allegrone G; Ceri H; Martinotti MG
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):541-53. PubMed ID: 19343338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation.
    Korenblum E; Sebastián GV; Paiva MM; Coutinho CM; Magalhães FC; Peyton BM; Seldin L
    Appl Microbiol Biotechnol; 2008 May; 79(1):97-103. PubMed ID: 18330565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel depsides as potential anti-inflammatory agents with potent inhibitory activity against Escherichia coli-induced interleukin-8 production.
    Lv PC; Xiong J; Chen J; Wang KR; Mao WJ; Zhu HL
    J Enzyme Inhib Med Chem; 2010 Aug; 25(4):590-5. PubMed ID: 20235754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens.
    Dusane DH; Pawar VS; Nancharaiah YV; Venugopalan VP; Kumar AR; Zinjarde SS
    Biofouling; 2011; 27(6):645-54. PubMed ID: 21707248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of moxifloxacin on biofilms produced in vitro by bacterial pathogens involved in acute exacerbations of chronic bronchitis.
    Roveta S; Schito AM; Marchese A; Schito GC
    Int J Antimicrob Agents; 2007 Nov; 30(5):415-21. PubMed ID: 17768034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of heterotrophic bacteria from Palk Bay sediments showing heavy metal tolerance and antibiotic production.
    Nithya C; Pandian SK
    Microbiol Res; 2010 Sep; 165(7):578-93. PubMed ID: 20015629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Efficacy of fluoroquinolones on urological infection pathogens within biofilms].
    Tets VV; Artemenko NK; Zaslavskaia NV; Tets GV
    Urologiia; 2010; (1):13-7. PubMed ID: 20891043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil.
    Harkenthal M; Reichling J; Geiss HK; Saller R
    Pharmazie; 1999 Jun; 54(6):460-3. PubMed ID: 10399193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens.
    Nasar-Abbas SM; Halkman AK
    Int J Food Microbiol; 2004 Dec; 97(1):63-9. PubMed ID: 15527919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroform extract of turmeric inhibits biofilm formation, EPS production and motility in antibiotic resistant bacteria.
    Hayat S; Sabri AN; McHugh TD
    J Gen Appl Microbiol; 2018 Jan; 63(6):325-338. PubMed ID: 29142162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of the Zürich burn-biofilm model.
    Guggenheim M; Thurnheer T; Gmür R; Giovanoli P; Guggenheim B
    Burns; 2011 Nov; 37(7):1125-33. PubMed ID: 21724333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.