These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21615133)

  • 21. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.
    de Weert JP; Keijzer TJ; van Gaans PF
    Chemosphere; 2014 Dec; 117():94-103. PubMed ID: 24974015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO).
    Silva JA; Crimi M; Palaia T; Ko S; Davenport S
    J Contam Hydrol; 2017 Apr; 199():36-49. PubMed ID: 28341384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring of in-situ chemical oxidation for remediation of diesel-contaminated soil with electrical resistivity tomography.
    Xia T; Ma M; Huisman JA; Zheng C; Gao C; Mao D
    J Contam Hydrol; 2023 May; 256():104170. PubMed ID: 36924705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concentration rebound following in situ chemical oxidation in fractured clay.
    Mundle K; Reynolds DA; West MR; Kueper BH
    Ground Water; 2007; 45(6):692-702. PubMed ID: 17973747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing TCE source bioremediation by geostatistical analysis of a flux fence.
    Cai Z; Wilson RD; Lerner DN
    Ground Water; 2012; 50(6):908-17. PubMed ID: 22352471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nested monitoring approaches to delineate groundwater trichloroethene discharge to a UK lowland stream at multiple spatial scales.
    Weatherill J; Krause S; Voyce K; Drijfhout F; Levy A; Cassidy N
    J Contam Hydrol; 2014 Mar; 158():38-54. PubMed ID: 24424265
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of an automated respirometer for in situ chemical oxidation (ISCO) activator type and concentration selection.
    Makri C; Aspray TJ
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):3141-3146. PubMed ID: 34792776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of injection system design on ISCO performance with permanganate--mathematical modeling results.
    Cha KY; Borden RC
    J Contam Hydrol; 2012 Feb; 128(1-4):33-46. PubMed ID: 22192343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.
    Johnston CD; Davis GB; Bastow TP; Woodbury RJ; Rao PS; Annable MD; Rhodes S
    J Contam Hydrol; 2014 Aug; 164():100-13. PubMed ID: 24973505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics and applications of controlled-release KMnO4 for groundwater remediation.
    Lee ES; Schwartz FW
    Chemosphere; 2007 Feb; 66(11):2058-66. PubMed ID: 17140635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate.
    Hort RD; Revil A; Munakata-Marr J
    J Contam Hydrol; 2014 Sep; 165():11-23. PubMed ID: 25064184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental Electrokinetics for a sustainable subsurface.
    Lima AT; Hofmann A; Reynolds D; Ptacek CJ; Van Cappellen P; Ottosen LM; Pamukcu S; Alshawabekh A; O'Carroll DM; Riis C; Cox E; Gent DB; Landis R; Wang J; Chowdhury AIA; Secord EL; Sanchez-Hachair A
    Chemosphere; 2017 Aug; 181():122-133. PubMed ID: 28433930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pore-Scale Mechanisms of Solid Phase Emergence During DNAPL Remediation by Chemical Oxidation.
    Wang Z; Yang Z; Fagerlund F; Zhong H; Hu R; Niemi A; Illangasekare T; Chen YF
    Environ Sci Technol; 2022 Aug; 56(16):11343-11353. PubMed ID: 35904865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flux-based assessment at a manufacturing site contaminated with trichloroethylene.
    Basu NB; Rao PS; Poyer IC; Annable MD; Hatfield K
    J Contam Hydrol; 2006 Jun; 86(1-2):105-27. PubMed ID: 16581154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill.
    Christenson MD; Kambhu A; Comfort SD
    Chemosphere; 2012 Oct; 89(6):680-7. PubMed ID: 22784864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone.
    Verginelli I; Capobianco O; Hartog N; Baciocchi R
    J Contam Hydrol; 2017 Feb; 197():50-61. PubMed ID: 28109630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Persulfate activation during exertion of total oxidant demand.
    Teel AL; Elloy FC; Watts RJ
    Chemosphere; 2016 Sep; 158():184-92. PubMed ID: 27269993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intercalation of trichloroethene by sediment-associated clay minerals.
    Matthieu DE; Brusseau ML; Johnson GR; Artiola JL; Bowden ML; Curry JE
    Chemosphere; 2013 Jan; 90(2):459-63. PubMed ID: 22921434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.