BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21615147)

  • 1. Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing.
    Debdab M; Carreaux F; Renault S; Soundararajan M; Fedorov O; Filippakopoulos P; Lozach O; Babault L; Tahtouh T; Baratte B; Ogawa Y; Hagiwara M; Eisenreich A; Rauch U; Knapp S; Meijer L; Bazureau JP
    J Med Chem; 2011 Jun; 54(12):4172-86. PubMed ID: 21615147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B.
    Tahtouh T; Elkins JM; Filippakopoulos P; Soundararajan M; Burgy G; Durieu E; Cochet C; Schmid RS; Lo DC; Delhommel F; Oberholzer AE; Pearl LH; Carreaux F; Bazureau JP; Knapp S; Meijer L
    J Med Chem; 2012 Nov; 55(21):9312-30. PubMed ID: 22998443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue factor in human endothelial cells.
    Eisenreich A; Bogdanov VY; Zakrzewicz A; Pries A; Antoniak S; Poller W; Schultheiss HP; Rauch U
    Circ Res; 2009 Mar; 104(5):589-99. PubMed ID: 19168442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases.
    Loaëc N; Attanasio E; Villiers B; Durieu E; Tahtouh T; Cam M; Davis RA; Alencar A; Roué M; Bourguet-Kondracki ML; Proksch P; Limanton E; Guiheneuf S; Carreaux F; Bazureau JP; Klautau M; Meijer L
    Mar Drugs; 2017 Oct; 15(10):. PubMed ID: 29039762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Activity Relationship in the Leucettine Family of Kinase Inhibitors.
    Tahtouh T; Durieu E; Villiers B; Bruyère C; Nguyen TL; Fant X; Ahn KH; Khurana L; Deau E; Lindberg MF; Sévère E; Miege F; Roche D; Limanton E; L'Helgoual'ch JM; Burgy G; Guiheneuf S; Herault Y; Kendall DA; Carreaux F; Bazureau JP; Meijer L
    J Med Chem; 2022 Jan; 65(2):1396-1417. PubMed ID: 34928152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical synthesis and biological validation of immobilized protein kinase inhibitory Leucettines.
    Burgy G; Tahtouh T; Durieu E; Foll-Josselin B; Limanton E; Meijer L; Carreaux F; Bazureau JP
    Eur J Med Chem; 2013 Apr; 62():728-37. PubMed ID: 23454515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human CDC2-like kinase 1 (CLK1): a novel target for Alzheimer's disease.
    Jain P; Karthikeyan C; Moorthy NS; Waiker DK; Jain AK; Trivedi P
    Curr Drug Targets; 2014 May; 15(5):539-50. PubMed ID: 24568585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leucettine L41, a DYRK1A-preferential DYRKs/CLKs inhibitor, prevents memory impairments and neurotoxicity induced by oligomeric Aβ25-35 peptide administration in mice.
    Naert G; Ferré V; Meunier J; Keller E; Malmström S; Givalois L; Carreaux F; Bazureau JP; Maurice T
    Eur Neuropsychopharmacol; 2015 Nov; 25(11):2170-82. PubMed ID: 26381812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and preliminary biological evaluation of new derivatives of the marine alkaloid leucettamine B as kinase inhibitors.
    Debdab M; Renault S; Lozach O; Meijer L; Paquin L; Carreaux F; Bazureau JP
    Eur J Med Chem; 2010 Feb; 45(2):805-10. PubMed ID: 19879673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cdc-like/dual-specificity tyrosine phosphorylation-regulated kinases inhibitor leucettine L41 induces mTOR-dependent autophagy: implication for Alzheimer's disease.
    Fant X; Durieu E; Chicanne G; Payrastre B; Sbrissa D; Shisheva A; Limanton E; Carreaux F; Bazureau JP; Meijer L
    Mol Pharmacol; 2014 Mar; 85(3):441-50. PubMed ID: 24366666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506.
    Pilch B; Allemand E; Facompré M; Bailly C; Riou JF; Soret J; Tazi J
    Cancer Res; 2001 Sep; 61(18):6876-84. PubMed ID: 11559564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SR protein kinases: the splice of life.
    Stojdl DF; Bell JC
    Biochem Cell Biol; 1999; 77(4):293-8. PubMed ID: 10546892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing.
    Duncan PI; Stojdl DF; Marius RM; Scheit KH; Bell JC
    Exp Cell Res; 1998 Jun; 241(2):300-8. PubMed ID: 9637771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two nucleus-localized CDK-like kinases with crucial roles for malaria parasite erythrocytic replication are involved in phosphorylation of splicing factor.
    Agarwal S; Kern S; Halbert J; Przyborski JM; Baumeister S; Dandekar T; Doerig C; Pradel G
    J Cell Biochem; 2011 May; 112(5):1295-310. PubMed ID: 21312235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing.
    Araki S; Dairiki R; Nakayama Y; Murai A; Miyashita R; Iwatani M; Nomura T; Nakanishi O
    PLoS One; 2015; 10(1):e0116929. PubMed ID: 25581376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors of the tyrosine kinase EphB4. Part 3: identification of non-benzodioxole-based kinase inhibitors.
    Bardelle C; Barlaam B; Brooks N; Coleman T; Cross D; Ducray R; Green I; Brempt CL; Olivier A; Read J
    Bioorg Med Chem Lett; 2010 Nov; 20(21):6242-5. PubMed ID: 20850301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA.
    Bourgeois CF; Lejeune F; Stévenin J
    Prog Nucleic Acid Res Mol Biol; 2004; 78():37-88. PubMed ID: 15210328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors.
    Hartmann AM; Rujescu D; Giannakouros T; Nikolakaki E; Goedert M; Mandelkow EM; Gao QS; Andreadis A; Stamm S
    Mol Cell Neurosci; 2001 Jul; 18(1):80-90. PubMed ID: 11461155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a chemical inhibitor for nuclear speckle formation: implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing.
    Kurogi Y; Matsuo Y; Mihara Y; Yagi H; Shigaki-Miyamoto K; Toyota S; Azuma Y; Igarashi M; Tani T
    Biochem Biophys Res Commun; 2014 Mar; 446(1):119-24. PubMed ID: 24569078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Akt2 regulation of Cdc2-like kinases (Clk/Sty), serine/arginine-rich (SR) protein phosphorylation, and insulin-induced alternative splicing of PKCbetaII messenger ribonucleic acid.
    Jiang K; Patel NA; Watson JE; Apostolatos H; Kleiman E; Hanson O; Hagiwara M; Cooper DR
    Endocrinology; 2009 May; 150(5):2087-97. PubMed ID: 19116344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.