BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21615333)

  • 1. Super toxins from a super bug: structure and function of Clostridium difficile toxins.
    Davies AH; Roberts AK; Shone CC; Acharya KR
    Biochem J; 2011 Jun; 436(3):517-26. PubMed ID: 21615333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.
    Jank T; Giesemann T; Aktories K
    Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile.
    Gülke I; Pfeifer G; Liese J; Fritz M; Hofmann F; Aktories K; Barth H
    Infect Immun; 2001 Oct; 69(10):6004-11. PubMed ID: 11553537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteremia with a large clostridial toxin-negative, binary toxin-positive strain of Clostridium difficile.
    Elliott B; Reed R; Chang BJ; Riley TV
    Anaerobe; 2009 Dec; 15(6):249-51. PubMed ID: 19723585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cytotoxic effect of Clostridioides difficile pore-forming toxin CDTb.
    Landenberger M; Nieland J; Roeder M; Nørgaard K; Papatheodorou P; Ernst K; Barth H
    Biochim Biophys Acta Biomembr; 2021 Jun; 1863(6):183603. PubMed ID: 33689753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (1)H(N), (13)C, and (15)N resonance assignments of the CDTb-interacting domain (CDTaBID) from the Clostridium difficile binary toxin catalytic component (CDTa, residues 1-221).
    Roth BM; Varney KM; Rustandi RR; Weber DJ
    Biomol NMR Assign; 2016 Oct; 10(2):335-9. PubMed ID: 27351891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The uptake machinery of clostridial actin ADP-ribosylating toxins--a cell delivery system for fusion proteins and polypeptide drugs.
    Barth H; Blöcker D; Aktories K
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Dec; 366(6):501-12. PubMed ID: 12444490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and mode of action of clostridial glucosylating toxins: the ABCD model.
    Jank T; Aktories K
    Trends Microbiol; 2008 May; 16(5):222-9. PubMed ID: 18394902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Profile of toxigenicity of Clostridium difficile strains isolated from paediatric patients with clinical diagnosis of antibiotic associated diarrhea (AAD)].
    Wultańska D; Pituch H; Obuch-Woszczatyński P; Meisel-Mikołajczyk F; Luczak M
    Med Dosw Mikrobiol; 2005; 57(4):377-82. PubMed ID: 16773831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection.
    Persson S; Torpdahl M; Olsen KE
    Clin Microbiol Infect; 2008 Nov; 14(11):1057-64. PubMed ID: 19040478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clostridium difficile toxins: more than mere inhibitors of Rho proteins.
    Genth H; Dreger SC; Huelsenbeck J; Just I
    Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the cell-binding component of the
    Xu X; Godoy-Ruiz R; Adipietro KA; Peralta C; Ben-Hail D; Varney KM; Cook ME; Roth BM; Wilder PT; Cleveland T; Grishaev A; Neu HM; Michel SLJ; Yu W; Beckett D; Rustandi RR; Lancaster C; Loughney JW; Kristopeit A; Christanti S; Olson JW; MacKerell AD; Georges AD; Pozharski E; Weber DJ
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1049-1058. PubMed ID: 31896582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile.
    Huelsenbeck J; Dreger SC; Gerhard R; Fritz G; Just I; Genth H
    Biochemistry; 2007 Apr; 46(16):4923-31. PubMed ID: 17397186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hospital outbreak of Clostridium difficile disease associated with isolates carrying binary toxin genes.
    McEllistrem MC; Carman RJ; Gerding DN; Genheimer CW; Zheng L
    Clin Infect Dis; 2005 Jan; 40(2):265-72. PubMed ID: 15655746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile.
    Just I; Selzer J; von Eichel-Streiber C; Aktories K
    J Clin Invest; 1995 Mar; 95(3):1026-31. PubMed ID: 7883950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression, purification and cell cytotoxicity of actin-modifying binary toxin from Clostridium difficile.
    Sundriyal A; Roberts AK; Ling R; McGlashan J; Shone CC; Acharya KR
    Protein Expr Purif; 2010 Nov; 74(1):42-8. PubMed ID: 20433927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins.
    Just I; Hofmann F; Genth H; Gerhard R
    Int J Med Microbiol; 2001 Sep; 291(4):243-50. PubMed ID: 11680784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clostridium difficile toxins: mechanism of action and role in disease.
    Voth DE; Ballard JD
    Clin Microbiol Rev; 2005 Apr; 18(2):247-63. PubMed ID: 15831824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.