BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21615333)

  • 21. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.
    Chen S; Sun C; Wang H; Wang J
    Toxins (Basel); 2015 Dec; 7(12):5254-67. PubMed ID: 26633511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural characterization of the cell wall binding domains of Clostridium difficile toxins A and B; evidence that Ca2+ plays a role in toxin A cell surface association.
    Demarest SJ; Salbato J; Elia M; Zhong J; Morrow T; Holland T; Kline K; Woodnutt G; Kimmel BE; Hansen G
    J Mol Biol; 2005 Mar; 346(5):1197-206. PubMed ID: 15713474
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binary toxin producing Clostridium difficile strains.
    Rupnik M; Grabnar M; Geric B
    Anaerobe; 2003 Dec; 9(6):289-94. PubMed ID: 16887714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters.
    Geric B; Carman RJ; Rupnik M; Genheimer CW; Sambol SP; Lyerly DM; Gerding DN; Johnson S
    J Infect Dis; 2006 Apr; 193(8):1143-50. PubMed ID: 16544255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90.
    Kaiser E; Kroll C; Ernst K; Schwan C; Popoff M; Fischer G; Buchner J; Aktories K; Barth H
    Infect Immun; 2011 Oct; 79(10):3913-21. PubMed ID: 21768281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time multiplex polymerase chain reaction assay for rapid detection of Clostridium difficile toxin-encoding strains.
    Houser BA; Hattel AL; Jayarao BM
    Foodborne Pathog Dis; 2010 Jun; 7(6):719-26. PubMed ID: 20113206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region.
    Faust C; Ye B; Song KP
    Biochem Biophys Res Commun; 1998 Oct; 251(1):100-5. PubMed ID: 9790914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Epidemiological study of Clostridium difficile strains isolated in Jean-Verdier-René-Muret hospitals from 2001 to 2007].
    Poilane I; Fantinato C; Cruaud P; Collignon A
    Pathol Biol (Paris); 2008; 56(7-8):412-6. PubMed ID: 18842360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large clostridial cytotoxins.
    Just I; Gerhard R
    Rev Physiol Biochem Pharmacol; 2004; 152():23-47. PubMed ID: 15449191
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes.
    Rupnik M
    FEMS Microbiol Rev; 2008 May; 32(3):541-55. PubMed ID: 18397287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing of Clostridium difficile toxins.
    Giesemann T; Egerer M; Jank T; Aktories K
    J Med Microbiol; 2008 Jun; 57(Pt 6):690-696. PubMed ID: 18480324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT.
    Unger M; Eichhoff AM; Schumacher L; Strysio M; Menzel S; Schwan C; Alzogaray V; Zylberman V; Seman M; Brandner J; Rohde H; Zhu K; Haag F; Mittrücker HW; Goldbaum F; Aktories K; Koch-Nolte F
    Sci Rep; 2015 Jan; 5():7850. PubMed ID: 25597743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases.
    Nottrott S; Schoentaube J; Genth H; Just I; Gerhard R
    Apoptosis; 2007 Aug; 12(8):1443-53. PubMed ID: 17437185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Actin as target for modification by bacterial protein toxins.
    Aktories K; Lang AE; Schwan C; Mannherz HG
    FEBS J; 2011 Dec; 278(23):4526-43. PubMed ID: 21466657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucosylation of Rho proteins by Clostridium difficile toxin B.
    Just I; Selzer J; Wilm M; von Eichel-Streiber C; Mann M; Aktories K
    Nature; 1995 Jun; 375(6531):500-3. PubMed ID: 7777059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxicity assessment of Clostridium difficile toxins in rodent models and protection of vaccination.
    Wang S; Rustandi RR; Lancaster C; Hong LG; Thiriot DS; Xie J; Secore S; Kristopeit A; Wang SC; Heinrichs JH
    Vaccine; 2016 Mar; 34(10):1319-23. PubMed ID: 26614590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile.
    Stubbs S; Rupnik M; Gibert M; Brazier J; Duerden B; Popoff M
    FEMS Microbiol Lett; 2000 May; 186(2):307-12. PubMed ID: 10802189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A.
    Schoentaube J; Olling A; Tatge H; Just I; Gerhard R
    Cell Microbiol; 2009 Dec; 11(12):1816-26. PubMed ID: 19709124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of toxin A and toxin B in the virulence of Clostridium difficile.
    Carter GP; Rood JI; Lyras D
    Trends Microbiol; 2012 Jan; 20(1):21-9. PubMed ID: 22154163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.