BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 2161596)

  • 1. Creation of ARS activity in yeast through iteration of non-functional sequences.
    Zweifel SG; Fangman WL
    Yeast; 1990; 6(3):179-86. PubMed ID: 2161596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AT-rich sequences from the arbuscular mycorrhizal fungus Gigaspora rosea exhibit ARS function in the yeast Saccharomyces cerevisiae.
    Bergero R
    Fungal Genet Biol; 2006 May; 43(5):337-42. PubMed ID: 16504551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Difference in strength of autonomously replicating sequences among repeats in the rDNA region of Saccharomyces cerevisiae.
    Reppe S; Jemtland R; Oyen TB
    Biochem Biophys Res Commun; 1999 Dec; 266(1):190-5. PubMed ID: 10581188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of DNA sequences homologous with the ARS core consensus in Saccharomyces cerevisiae.
    Bouton AH; Stirling VB; Smith MM
    Yeast; 1987 Jun; 3(2):107-15. PubMed ID: 3332964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Only centromeres can supply the partition system required for ARS function in the yeast Yarrowia lipolytica.
    Vernis L; Poljak L; Chasles M; Uchida K; Casarégola S; Käs E; Matsuoka M; Gaillardin C; Fournier P
    J Mol Biol; 2001 Jan; 305(2):203-17. PubMed ID: 11124900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in ARS1 increase the rate of simple loss of plasmids in Saccharomyces cerevisiae.
    Strich R; Woontner M; Scott JF
    Yeast; 1986 Sep; 2(3):169-78. PubMed ID: 3333306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TA-repeat microsatellites are closely associated with ARS consensus sequences in yeast chromosome III.
    Valle G
    Yeast; 1993 Jul; 9(7):753-9. PubMed ID: 8368009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae.
    Murakami Y; Naitou M; Hagiwara H; Shibata T; Ozawa M; Sasanuma S; Sasanuma M; Tsuchiya Y; Soeda E; Yokoyama K
    Nat Genet; 1995 Jul; 10(3):261-8. PubMed ID: 7670463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and sequence analysis of a K. lactis chromosomal DNA element able to autonomously replicate in S. cerevisiae and K. lactis.
    Fabiani L; Aragona M; Frontali L
    Yeast; 1990; 6(1):69-76. PubMed ID: 2180237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, replication efficiency and fragility of yeast ARS elements.
    Dhar MK; Sehgal S; Kaul S
    Res Microbiol; 2012 May; 163(4):243-53. PubMed ID: 22504206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Extrachromosomal DNA in yeast-Saccharomyces].
    Larionov VL; Kuprina NIu; Traugott MN
    Mol Biol (Mosk); 1983; 17(5):983-91. PubMed ID: 6355825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical separation and functional interaction of Kluyveromyces lactis and Saccharomyces cerevisiae ARS elements derived from killer plasmid DNA.
    Thompson A; Oliver SG
    Yeast; 1986 Sep; 2(3):179-91. PubMed ID: 3333307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Localization in the P-element of Drosophila melanogaster of sequences ensuring the autonomic replication of plasmids in yeasts].
    Danilevskaia ON; Kurenova EV; Kaverina EN
    Mol Gen Mikrobiol Virusol; 1988 Apr; (4):41-4. PubMed ID: 2841596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of the ARS-like activity and transcription initiation sites in the non-canonical yeast mitochondrial ori 6 region.
    Delouya D; Nobrega FG
    Yeast; 1991 Jan; 7(1):51-60. PubMed ID: 1708641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kluyveromyces marxianus small DNA fragments contain both autonomous replicative and centromeric elements that also function in Kluyveromyces lactis.
    Iborra F; Ball MM
    Yeast; 1994 Dec; 10(12):1621-9. PubMed ID: 7725797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Formation of ARS-independent miniplasmids upon transformation of yeast Pichia methanolica with DNA molecules containing "transforming" and "nontransforming" genes].
    Tarutina MG; Tolstorukov II
    Genetika; 2002 Nov; 38(11):1451-62. PubMed ID: 12500670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the sequences required for chromosomal replicator function in Kluyveromyces lactis.
    Irene C; Maciariello C; Cioci F; Camilloni G; Newlon CS; Fabiani L
    Mol Microbiol; 2004 Mar; 51(5):1413-23. PubMed ID: 14982634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titration of replication activity by increasing ARS dosage in yeast plasmids.
    Hyman BC; Garcia-Garcia F
    Curr Genet; 1993 Feb; 23(2):141-7. PubMed ID: 8431955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of a replication origin from Saccharomyces cerevisiae: identification of a new replication enhancer.
    Raychaudhuri S; Byers R; Upton T; Eisenberg S
    Nucleic Acids Res; 1997 Dec; 25(24):5057-64. PubMed ID: 9396816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A yeast replication origin consists of multiple copies of a small conserved sequence.
    Palzkill TG; Newlon CS
    Cell; 1988 May; 53(3):441-50. PubMed ID: 3284655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.