BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21616464)

  • 1. Multiscale mechanobiology of de novo bone generation, remodeling and adaptation of autograft in a common ovine femur model.
    Knothe Tate ML; Dolejs S; McBride SH; Matthew Miller R; Knothe UR
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):829-40. PubMed ID: 21616464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic, mathematical model to predict the dynamics of tissue genesis in bone defects via mechanical feedback and mediation of biochemical factors.
    Moore SR; Saidel GM; Knothe U; Knothe Tate ML
    PLoS Comput Biol; 2014 Jun; 10(6):e1003604. PubMed ID: 24967742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surgical membranes as directional delivery devices to generate tissue: testing in an ovine critical sized defect model.
    Knothe Tate ML; Chang H; Moore SR; Knothe UR
    PLoS One; 2011; 6(12):e28702. PubMed ID: 22174873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects.
    Knothe Tate ML; Ritzman TF; Schneider E; Knothe UR
    J Bone Joint Surg Am; 2007 Feb; 89(2):307-16. PubMed ID: 17272445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mechanical loading patterns, bone graft, and proximity to periosteum on bone defect healing.
    Knothe UR; Dolejs S; Matthew Miller R; Knothe Tate ML
    J Biomech; 2010 Oct; 43(14):2728-37. PubMed ID: 20673900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Net change in periosteal strain during stance shift loading after surgery correlates to rapid de novo bone generation in critically sized defects.
    McBride SH; Dolejs S; Brianza S; Knothe U; Knothe Tate ML
    Ann Biomed Eng; 2011 May; 39(5):1570-81. PubMed ID: 21271290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translating Periosteum's Regenerative Power: Insights From Quantitative Analysis of Tissue Genesis With a Periosteum Substitute Implant.
    Moore SR; Heu C; Yu NY; Whan RM; Knothe UR; Milz S; Knothe Tate ML
    Stem Cells Transl Med; 2016 Dec; 5(12):1739-1749. PubMed ID: 27465072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering.
    Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE
    J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic mechanical properties of ovine femoral periosteum and the effects of cryopreservation.
    McBride SH; Evans SF; Knothe Tate ML
    J Biomech; 2011 Jul; 44(10):1954-9. PubMed ID: 21632057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A perspective: engineering periosteum for structural bone graft healing.
    Zhang X; Awad HA; O'Keefe RJ; Guldberg RE; Schwarz EM
    Clin Orthop Relat Res; 2008 Aug; 466(8):1777-87. PubMed ID: 18509709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogel-based Delivery of rhBMP-2 Improves Healing of Large Bone Defects Compared With Autograft.
    Krishnan L; Priddy LB; Esancy C; Li MT; Stevens HY; Jiang X; Tran L; Rowe DW; Guldberg RE
    Clin Orthop Relat Res; 2015 Sep; 473(9):2885-97. PubMed ID: 25917422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging ideas: Engineering the periosteum: revitalizing allografts by mimicking autograft healing.
    Hoffman MD; Benoit DS
    Clin Orthop Relat Res; 2013 Mar; 471(3):721-6. PubMed ID: 23179118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches.
    Colnot C; Zhang X; Knothe Tate ML
    J Orthop Res; 2012 Dec; 30(12):1869-78. PubMed ID: 22778049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic ability of free periosteal autografts in tibial fractures with severe soft tissue damage: an experimental study.
    Reynders P; Becker JH; Broos P
    J Orthop Trauma; 1999 Feb; 13(2):121-8. PubMed ID: 10052787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of mechanical loading in healing of massive bone autografts.
    Knothe Tate ML; Dolejs S; Miller RM; Knothe UR
    J Orthop Res; 2010 Dec; 28(12):1657-64. PubMed ID: 20589937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs.
    Lemperle SM; Calhoun CJ; Curran RW; Holmes RE
    Plast Reconstr Surg; 1998 Mar; 101(3):660-72. PubMed ID: 9500382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel murine segmental femoral graft model.
    Tiyapatanaputi P; Rubery PT; Carmouche J; Schwarz EM; O'keefe RJ; Zhang X
    J Orthop Res; 2004 Nov; 22(6):1254-60. PubMed ID: 15475206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction.
    Wang T; Zhai Y; Nuzzo M; Yang X; Yang Y; Zhang X
    Biomaterials; 2018 Nov; 182():279-288. PubMed ID: 30142527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined delivery of FGF-2, TGF-β1, and adipose-derived stem cells from an engineered periosteum to a critical-sized mouse femur defect.
    Romero R; Travers JK; Asbury E; Pennybaker A; Chubb L; Rose R; Ehrhart NP; Kipper MJ
    J Biomed Mater Res A; 2017 Mar; 105(3):900-911. PubMed ID: 27874253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.