These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21616620)

  • 1. Phase gradient imaging for positive contrast generation to superparamagnetic iron oxide nanoparticle-labeled targets in magnetic resonance imaging.
    Zhu H; Demachi K; Sekino M
    Magn Reson Imaging; 2011 Sep; 29(7):891-8. PubMed ID: 21616620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.
    Zhu H; Nie B; Liu H; Guo H; Demachi K; Sekino M; Shan B
    Magn Reson Imaging; 2016 May; 34(4):552-61. PubMed ID: 26592796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive contrast technique for the detection and quantification of superparamagnetic iron oxide nanoparticles in MRI.
    Zhao Q; Langley J; Lee S; Liu W
    NMR Biomed; 2011 Jun; 24(5):464-72. PubMed ID: 20931569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental study of ON-Resonance Saturation, an MRI sequence for positive contrast with superparamagnetic nanoparticles.
    Delangre S; Vuong QL; Henrard D; Magat J; Po C; Gallez B; Gossuin Y
    J Magn Reson; 2015 Mar; 252():151-62. PubMed ID: 25700117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells.
    Dahnke H; Liu W; Herzka D; Frank JA; Schaeffter T
    Magn Reson Med; 2008 Sep; 60(3):595-603. PubMed ID: 18727097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyglycerol-grafted superparamagnetic iron oxide nanoparticles: highly efficient MRI contrast agent for liver and kidney imaging and potential scaffold for cellular and molecular imaging.
    Arsalani N; Fattahi H; Laurent S; Burtea C; Vander Elst L; Muller RN
    Contrast Media Mol Imaging; 2012; 7(2):185-94. PubMed ID: 22434631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles.
    Liu W; Dahnke H; Jordan EK; Schaeffter T; Frank JA
    NMR Biomed; 2008 Mar; 21(3):242-50. PubMed ID: 17566968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Targeted magnetic nanoparticles used as probe for magnetic resonance molecular imaging of tumor].
    Lu JJ; Wang F; Jin ZY; Zhong DR
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2009 Apr; 31(2):124-8. PubMed ID: 19507586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positive contrast imaging of iron oxide nanoparticles with susceptibility-weighted imaging.
    Eibofner F; Steidle G; Kehlbach R; Bantleon R; Schick F
    Magn Reson Med; 2010 Oct; 64(4):1027-38. PubMed ID: 20564596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent magnetic nanoparticles with specific targeting functions for combinded targeting, optical imaging and magnetic resonance imaging.
    Chen YC; Chang WH; Wang SJ; Hsieh WY
    J Biomater Sci Polym Ed; 2012; 23(15):1903-22. PubMed ID: 22024467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adiabatic pulse preparation for imaging iron oxide nanoparticles.
    Harris SS; Mao H; Hu XP
    Magn Reson Med; 2012 Apr; 67(4):1133-7. PubMed ID: 22213366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner.
    Li X; Du X; Huo T; Liu X; Zhang S; Yuan F
    Acta Radiol; 2009 Jul; 50(6):583-94. PubMed ID: 19449236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing echo-shifts in k-space for generation of positive contrast in areas with marked susceptibility alterations.
    Eibofner F; Steidle G; Kehlbach R; Bantleon R; Schick F
    Magn Reson Med; 2012 Nov; 68(5):1399-409. PubMed ID: 22183853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of superparamagnetic iron oxide on tumor-to-liver contrast at T2*-weighted gradient-echo MRI: comparison between 3.0T and 1.5T MR systems.
    Kim T; Murakami T; Hori M; Onishi H; Tomoda K; Nakamura H
    J Magn Reson Imaging; 2009 Mar; 29(3):595-600. PubMed ID: 19243054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T.
    Mani V; Briley-Saebo KC; Itskovich VV; Samber DD; Fayad ZA
    Magn Reson Med; 2006 Jan; 55(1):126-35. PubMed ID: 16342148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heparin-coated superparamagnetic iron oxide for in vivo MR imaging of human MSCs.
    Lee JH; Jung MJ; Hwang YH; Lee YJ; Lee S; Lee DY; Shin H
    Biomaterials; 2012 Jun; 33(19):4861-71. PubMed ID: 22475532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles.
    Cunningham CH; Arai T; Yang PC; McConnell MV; Pauly JM; Conolly SM
    Magn Reson Med; 2005 May; 53(5):999-1005. PubMed ID: 15844142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian process classification of superparamagnetic relaxometry data: Phantom study.
    Sovizi J; Mathieu KB; Thrower SL; Stefan W; Hazle JD; Fuentes D
    Artif Intell Med; 2017 Oct; 82():47-59. PubMed ID: 28911905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic particle imaging: visualization of instruments for cardiovascular intervention.
    Haegele J; Rahmer J; Gleich B; Borgert J; Wojtczyk H; Panagiotopoulos N; Buzug TM; Barkhausen J; Vogt FM
    Radiology; 2012 Dec; 265(3):933-8. PubMed ID: 22996744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH-titratable superparamagnetic iron oxide for improved nanoparticle accumulation in acidic tumor microenvironments.
    Crayton SH; Tsourkas A
    ACS Nano; 2011 Dec; 5(12):9592-601. PubMed ID: 22035454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.