These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21617082)

  • 1. Increases in cerebrovascular impedance in older adults.
    Zhu YS; Tseng BY; Shibata S; Levine BD; Zhang R
    J Appl Physiol (1985); 2011 Aug; 111(2):376-81. PubMed ID: 21617082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Older age and male sex are associated with higher cerebrovascular impedance.
    Sugawara J; Tarumi T; Xing C; Liu J; Tomoto T; Pasha EP; Zhang R
    J Appl Physiol (1985); 2021 Jan; 130(1):172-181. PubMed ID: 33151779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Middle-aged endurance athletes exhibit lower cerebrovascular impedance than sedentary peers.
    Sugawara J; Tomoto T; Repshas J; Zhang R; Tarumi T
    J Appl Physiol (1985); 2020 Aug; 129(2):335-342. PubMed ID: 32673159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span.
    Xing CY; Tarumi T; Meijers RL; Turner M; Repshas J; Xiong L; Ding K; Vongpatanasin W; Yuan LJ; Zhang R
    Hypertension; 2017 Apr; 69(4):712-720. PubMed ID: 28193707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic exercise training reduces cerebrovascular impedance in older adults: a 1-year randomized controlled trial.
    Sugawara J; Tarumi T; Xing C; Liu J; Tomoto T; Pasha EP; Zhang R
    J Appl Physiol (1985); 2022 Oct; 133(4):902-912. PubMed ID: 36107990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced cerebrovascular and cardioventilatory responses to intermittent hypoxia in elderly.
    Liu X; Chen X; Kline G; Ross SE; Hall JR; Ding Y; Mallet RT; Shi X
    Respir Physiol Neurobiol; 2020 Jan; 271():103306. PubMed ID: 31557538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation.
    Larsen FS; Olsen KS; Hansen BA; Paulson OB; Knudsen GM
    Stroke; 1994 Oct; 25(10):1985-8. PubMed ID: 7916502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation.
    Oudegeest-Sander MH; van Beek AH; Abbink K; Olde Rikkert MG; Hopman MT; Claassen JA
    Exp Physiol; 2014 Mar; 99(3):586-98. PubMed ID: 24363382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance.
    Kim MO; O'Rourke MF; Adji A; Avolio AP
    Acta Neurochir Suppl; 2016; 122():307-11. PubMed ID: 27165927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2016 Mar; 120(5):552-63. PubMed ID: 26586907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomic neural control of dynamic cerebral autoregulation in humans.
    Zhang R; Zuckerman JH; Iwasaki K; Wilson TE; Crandall CG; Levine BD
    Circulation; 2002 Oct; 106(14):1814-20. PubMed ID: 12356635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular Impedance During Hemodynamic Change in Rabbits: A Pilot Study.
    Kazimierska A; Kasprowicz M; Placek MM; Czosnyka M
    Acta Neurochir Suppl; 2021; 131():283-288. PubMed ID: 33839859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing cerebrovascular autoregulation from critical closing pressure and resistance area product during upright posture in aging and hypertension.
    Robertson AD; Edgell H; Hughson RL
    Am J Physiol Heart Circ Physiol; 2014 Jul; 307(2):H124-33. PubMed ID: 24858843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting cerebral blood flow response to orthostatic stress from resting dynamics: effects of healthy aging.
    Narayanan K; Collins JJ; Hamner J; Mukai S; Lipsitz LA
    Am J Physiol Regul Integr Comp Physiol; 2001 Sep; 281(3):R716-22. PubMed ID: 11506984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-dependent properties of cerebral blood transport--an experimental study in anaesthetized rabbits.
    Czosnyka M; Richards H; Pickard JD; Harris N; Iyer V
    Ultrasound Med Biol; 1994; 20(4):391-9. PubMed ID: 8085296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential blood flow responses to CO₂ in human internal and external carotid and vertebral arteries.
    Sato K; Sadamoto T; Hirasawa A; Oue A; Subudhi AW; Miyazawa T; Ogoh S
    J Physiol; 2012 Jul; 590(14):3277-90. PubMed ID: 22526884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans.
    Zhang R; Zuckerman JH; Levine BD
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1848-55. PubMed ID: 10843881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin cooling aids cerebrovascular function more effectively under severe than moderate heat stress.
    Lucas RA; Ainslie PN; Fan JL; Wilson LC; Thomas KN; Cotter JD
    Eur J Appl Physiol; 2010 May; 109(1):101-8. PubMed ID: 19946700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cerebral autoregulation during repeated squat-stand maneuvers.
    Claassen JA; Levine BD; Zhang R
    J Appl Physiol (1985); 2009 Jan; 106(1):153-60. PubMed ID: 18974368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambient fine particulate matter alters cerebral hemodynamics in the elderly.
    Wellenius GA; Boyle LD; Wilker EH; Sorond FA; Coull BA; Koutrakis P; Mittleman MA; Lipsitz LA
    Stroke; 2013 Jun; 44(6):1532-6. PubMed ID: 23709640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.