These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 2161758)
1. Divalent cation binding to reduced and octanoyl acyl-carrier protein. Tener DM; Mayo KH Eur J Biochem; 1990 May; 189(3):559-65. PubMed ID: 2161758 [TBL] [Abstract][Full Text] [Related]
2. NMR solution structure and biophysical characterization of Vibrio harveyi acyl carrier protein A75H: effects of divalent metal ions. Chan DI; Chu BC; Lau CK; Hunter HN; Byers DM; Vogel HJ J Biol Chem; 2010 Oct; 285(40):30558-66. PubMed ID: 20659901 [TBL] [Abstract][Full Text] [Related]
3. Location of divalent ion sites in acyl carrier protein using relaxation perturbed 2D NMR. Frederick AF; Kay LE; Prestegard JH FEBS Lett; 1988 Sep; 238(1):43-8. PubMed ID: 3049158 [TBL] [Abstract][Full Text] [Related]
4. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme. Legler PM; Lee HC; Peisach J; Mildvan AS Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828 [TBL] [Abstract][Full Text] [Related]
5. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II. Ananyev GM; Murphy A; Abe Y; Dismukes GC Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831 [TBL] [Abstract][Full Text] [Related]
6. Neutralization of acidic residues in helix II stabilizes the folded conformation of acyl carrier protein and variably alters its function with different enzymes. Gong H; Murphy A; McMaster CR; Byers DM J Biol Chem; 2007 Feb; 282(7):4494-4503. PubMed ID: 17179150 [TBL] [Abstract][Full Text] [Related]
7. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II). Buy C; Girault G; Zimmermann JL Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962 [TBL] [Abstract][Full Text] [Related]
8. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies. Villafranca JJ; Ash DE; Wedler FC Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828 [TBL] [Abstract][Full Text] [Related]
9. Acyl carrier protein from Escherichia coli. Structural characterization of short-chain acylated acyl carrier proteins by NMR. Mayo KH; Prestegard JH Biochemistry; 1985 Dec; 24(26):7834-8. PubMed ID: 3912008 [TBL] [Abstract][Full Text] [Related]
10. Binding of manganese(II) to DNA and the competitive effects of metal ions and organic cations. An electron paramagnetic resonance study. Reuben J; Gabbay EJ Biochemistry; 1975 Mar; 14(6):1230-5. PubMed ID: 164212 [TBL] [Abstract][Full Text] [Related]
11. Divalent cation-nucleotide complex at the exchangeable nucleotide binding site of tubulin. Jemiolo DK; Grisham CM J Biol Chem; 1982 Jul; 257(14):8148-52. PubMed ID: 6282875 [TBL] [Abstract][Full Text] [Related]
12. Electron paramagnetic resonance spectroscopic measurement of Mn2+ binding affinities to the hammerhead ribozyme and correlation with cleavage activity. Horton TE; Clardy DR; DeRose VJ Biochemistry; 1998 Dec; 37(51):18094-101. PubMed ID: 9922178 [TBL] [Abstract][Full Text] [Related]
13. Acyl carrier protein from Escherichia coli: characterization by proton and fluorine-19 nuclear magnetic resonance and evidence for restricted mobility of the fatty acid chain in tetradecanoyl-acyl-carrier protein. Gally HU; Spencer AK; Armitage IM; Prestegard JH; Cronan JE Biochemistry; 1978 Dec; 17(25):5377-82. PubMed ID: 31907 [TBL] [Abstract][Full Text] [Related]
14. Multiple inequivalent metal-nucleotide coordination environments in the presence of the VO2+-inhibited nitrogenase iron protein: pH-dependent structural rearrangements at the nucleotide binding site. Petersen J; Fisher K; Mitchell CJ; Lowe DJ Biochemistry; 2002 Nov; 41(44):13253-63. PubMed ID: 12403627 [TBL] [Abstract][Full Text] [Related]
15. On the location of the divalent metal binding sites and the light chain subunits of vertebrate myosin. Bagshaw CR Biochemistry; 1977 Jan; 16(1):59-67. PubMed ID: 188447 [TBL] [Abstract][Full Text] [Related]
16. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+. Conyers GB; Wu G; Bessman MJ; Mildvan AS Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402 [TBL] [Abstract][Full Text] [Related]
17. High-affinity metal-binding site in beef heart mitochondrial F1ATPase: an EPR spectroscopy study. Zoleo A; Contessi S; Lippe G; Pinato L; Brustolon M; Brunel LC; Dabbeni-Sala F; Maniero AL Biochemistry; 2004 Oct; 43(41):13214-24. PubMed ID: 15476415 [TBL] [Abstract][Full Text] [Related]
18. Effects of manganous ion on the phosphorus-31 nuclear magnetic resonance spectrum of adenosine triphosphate bound to nitrated G-actin: proximity of divalent metal ion and nucleotide binding sites. Brauer M; Sykes BD Biochemistry; 1982 Nov; 21(23):5934-9. PubMed ID: 7150537 [TBL] [Abstract][Full Text] [Related]
20. Metal ion binding properties of hen ovalbumin and S-ovalbumin: characterization of the metal ion binding site by 31P NMR and water proton relaxation rate enhancements. Goux WJ; Venkatasubramanian PN Biochemistry; 1986 Jan; 25(1):84-94. PubMed ID: 3954996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]