These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 2161768)

  • 1. Differentiation of human monocytes into accessory cells at serum-free conditions.
    Najar HM; Bru-Capdeville AC; Gieseler RK; Peters JH
    Eur J Cell Biol; 1990 Apr; 51(2):339-46. PubMed ID: 2161768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human peripheral blood accessory cell: isolation by hypotonic density gradient, functional, and phenotypical characterization.
    Nau P; Peters JH
    Immunobiology; 1986 Oct; 173(1):82-97. PubMed ID: 3026958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation-associated alteration in human monocyte-macrophage accessory cell function.
    Mayernik DG; Ul-Haq A; Rinehart JJ
    J Immunol; 1983 May; 130(5):2156-60. PubMed ID: 6300239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-6 and IL-1 enhance the accessory activity of human blood monocytes during differentiation to macrophages.
    Ruppert J; Peters JH
    J Immunol; 1991 Jan; 146(1):144-9. PubMed ID: 1984441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine and its derivatives control human monocyte differentiation into highly accessory cells versus macrophages.
    Najar HM; Ruhl S; Bru-Capdeville AC; Peters JH
    J Leukoc Biol; 1990 May; 47(5):429-39. PubMed ID: 2159513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessory cell function during monocyte/macrophage differentiation: relation to interleukin-1 (IL-1 beta) production and release.
    Ruppert J; Peters JH
    Eur J Cell Biol; 1991 Aug; 55(2):352-61. PubMed ID: 1935997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Rapid serum-free culture of dendritic cells from human peripheral blood monocytes and their intracellular signal transduction].
    Wu J; Wang XH; Yang DM; Yang TC; Wang J; Chen ZL
    Di Yi Jun Yi Da Xue Xue Bao; 2004 Nov; 24(11):1263-6. PubMed ID: 15567774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of CMRF-44+ monocyte-derived dendritic cells: insights into phenotype and function.
    Vuckovic S; Fearnley DB; Mannering SI; Dekker J; Whyte LF; Hart DN
    Exp Hematol; 1998 Dec; 26(13):1255-64. PubMed ID: 9845382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Follicular dendritic-like cells derived from human monocytes.
    Heinemann DE; Peters JH
    BMC Immunol; 2005 Sep; 6():23. PubMed ID: 16179091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cellular retinoic acid binding protein (CRABP II) during human monocyte differentiation in vitro.
    Kreutz M; Fritsche J; Andreesen R; Krause SW
    Biochem Biophys Res Commun; 1998 Jul; 248(3):830-4. PubMed ID: 9704013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes.
    Pickl WF; Majdic O; Kohl P; Stöckl J; Riedl E; Scheinecker C; Bello-Fernandez C; Knapp W
    J Immunol; 1996 Nov; 157(9):3850-9. PubMed ID: 8892615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative accessory cell function of human peripheral blood dendritic cells and monocytes.
    Thomas R; Davis LS; Lipsky PE
    J Immunol; 1993 Dec; 151(12):6840-52. PubMed ID: 8258694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Culture and characterisation of peripheral blood monocytes and monocyte-derived adherent cells of the tammar wallaby, Macropus eugenii.
    Young LJ; Deane EM
    Immunol Lett; 2005 Jan; 96(2):253-9. PubMed ID: 15585331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colony-stimulating factor-induced monocyte survival and differentiation into macrophages in serum-free cultures.
    Becker S; Warren MK; Haskill S
    J Immunol; 1987 Dec; 139(11):3703-9. PubMed ID: 2824612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of human monocytes into CD14 negative accessory cells: do dendritic cells derive from the monocytic lineage?
    Peters JH; Ruppert J; Gieseler RK; Najar HM; Xu H
    Pathobiology; 1991; 59(3):122-6. PubMed ID: 1715710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activities of granulocyte-macrophage colony-stimulating factor and interleukin-3 on monocytes.
    Suzuki H; Katayama N; Ikuta Y; Mukai K; Fujieda A; Mitani H; Araki H; Miyashita H; Hoshino N; Nishikawa H; Nishii K; Minami N; Shiku H
    Am J Hematol; 2004 Apr; 75(4):179-89. PubMed ID: 15054806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Veiled accessory cells deduced from monocytes.
    Peters JH; Ruhl S; Friedrichs D
    Immunobiology; 1987 Dec; 176(1-2):154-66. PubMed ID: 3502337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional comparison of mature human dendritic cells prepared in fluorinated ethylene-propylene bags or polystyrene flasks.
    Kurlander RJ; Tawab A; Fan Y; Carter CS; Read EJ
    Transfusion; 2006 Sep; 46(9):1494-504. PubMed ID: 16965575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accessory cells with a morphology and marker pattern of dendritic cells can be obtained from elutriator-purified blood monocyte fractions. An enhancing effect of metrizamide in this differentiation.
    Kabel PJ; de Haan-Meulman M; Voorbij HA; Kleingeld M; Knol EF; Drexhage HA
    Immunobiology; 1989 Oct; 179(4-5):395-41. PubMed ID: 2613274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle.
    Ramasamy R; Fazekasova H; Lam EW; Soeiro I; Lombardi G; Dazzi F
    Transplantation; 2007 Jan; 83(1):71-6. PubMed ID: 17220794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.