These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21617797)

  • 41. A hybrid silicon-PDMS optofluidic platform for sensing applications.
    Testa G; Persichetti G; Sarro PM; Bernini R
    Biomed Opt Express; 2014 Feb; 5(2):417-26. PubMed ID: 24575337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optofluidic differential spectroscopy for absorbance detection of sub-nanolitre liquid samples.
    Song W; Yang J
    Lab Chip; 2012 Apr; 12(7):1251-4. PubMed ID: 22334303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An in-plane optofluidic microchip for focal point control.
    Chao KS; Lin MS; Yang RJ
    Lab Chip; 2013 Oct; 13(19):3886-92. PubMed ID: 23918038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel Optofluidic Imaging System Integrated with Tunable Microlens Arrays.
    Zhong Y; Yu H; Wen Y; Zhou P; Guo H; Zou W; Lv X; Liu L
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11994-12004. PubMed ID: 36655899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical switch with ultra high extinction ratio using electrically controlled metal diffusion.
    Singh L; Srivastava S; Rajput S; Kaushik V; Mishra RD; Kumar M
    Opt Lett; 2021 Jun; 46(11):2626-2629. PubMed ID: 34061073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides.
    Sun P; Reano RM
    Opt Express; 2010 Apr; 18(8):8406-11. PubMed ID: 20588686
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On-chip switch for reconfigurable mode-multiplexing optical network.
    Sun C; Yu Y; Chen G; Zhang X
    Opt Express; 2016 Sep; 24(19):21722-8. PubMed ID: 27661910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polymer thermal optical switch for a flexible photonic circuit.
    Sun Y; Cao Y; Wang Q; Yi Y; Sun X; Wu Y; Wang F; Zhang D
    Appl Opt; 2018 Jan; 57(1):14-17. PubMed ID: 29328106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A monolithic photonic microcantilever device for in situ monitoring of volatile compounds.
    Misiakos K; Raptis I; Gerardino A; Contopanagos H; Kitsara M
    Lab Chip; 2009 May; 9(9):1261-6. PubMed ID: 19370246
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform.
    Fan SK; Lee HP; Chien CC; Lu YW; Chiu Y; Lin FY
    Lab Chip; 2016 Mar; 16(5):847-54. PubMed ID: 26841828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip.
    Van Campenhout J; Green WM; Vlasov YA
    Opt Express; 2009 Dec; 17(26):23793-808. PubMed ID: 20052090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.
    Thio SK; Jiang D; Park SY
    Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis.
    Nam SW; Van Noort D; Yang Y; Park S
    Lab Chip; 2007 May; 7(5):638-40. PubMed ID: 17476385
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reconfigurable RGB dye lasers based on the laminar flow control in an optofluidic chip.
    Kong Y; Dai H; He X; Zheng Y; Chen X
    Opt Lett; 2018 Sep; 43(18):4461-4464. PubMed ID: 30211890
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation.
    Ashok PC; Marchington RF; Mthunzi P; Krauss TF; Dholakia K
    Opt Express; 2010 Mar; 18(6):6396-407. PubMed ID: 20389663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Broad-band optical parametric gain on a silicon photonic chip.
    Foster MA; Turner AC; Sharping JE; Schmidt BS; Lipson M; Gaeta AL
    Nature; 2006 Jun; 441(7096):960-3. PubMed ID: 16791190
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel approach to use of elastomer for monitoring of pressure using plastic optical fiber.
    Kulkarni A; Kim H; Choi J; Kim T
    Rev Sci Instrum; 2010 Apr; 81(4):045108. PubMed ID: 20441369
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.
    Shameli SM; Elbuken C; Ou J; Ren CL; Pawliszyn J
    Electrophoresis; 2011 Feb; 32(3-4):333-9. PubMed ID: 21298660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.