These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21617996)

  • 1. Elastomeric electrospun scaffolds of poly(L-lactide-co-trimethylene carbonate) for myocardial tissue engineering.
    Mukherjee S; Gualandi C; Focarete ML; Ravichandran R; Venugopal JR; Raghunath M; Ramakrishna S
    J Mater Sci Mater Med; 2011 Jul; 22(7):1689-99. PubMed ID: 21617996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering.
    Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK
    Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable elastomeric scaffolds for soft tissue engineering.
    Pêgo AP; Poot AA; Grijpma DW; Feijen J
    J Control Release; 2003 Feb; 87(1-3):69-79. PubMed ID: 12618024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meniscal repair with additive manufacture of bioresorbable polymer: From physicochemical characterization to implantation of 3D printed poly (L-co-D, L lactide-co-trimethylene carbonate) with autologous stem cells in rabbits.
    Komatsu D; Cabrera ARE; Quevedo BV; Asami J; Cristina Motta A; de Moraes SC; Duarte MAT; Hausen MA; Aparecida de Rezende Duek E
    J Biomater Appl; 2024 Jul; 39(1):66-79. PubMed ID: 38646887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofibrous scaffolds electrospun from elastomeric biodegradable poly(L-lactide-co-epsilon-caprolactone) copolymer.
    Chung S; Moghe AK; Montero GA; Kim SH; King MW
    Biomed Mater; 2009 Feb; 4(1):015019. PubMed ID: 19193973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes.
    Xu B; Li Y; Fang X; Thouas GA; Cook WD; Newgreen DF; Chen Q
    J Mech Behav Biomed Mater; 2013 Dec; 28():354-65. PubMed ID: 24125905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable polyester elastomers in tissue engineering.
    Webb AR; Yang J; Ameer GA
    Expert Opin Biol Ther; 2004 Jun; 4(6):801-12. PubMed ID: 15174963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a membrane of poly (L-co-D,L lactic acid-co-trimethylene carbonate) with aloe vera: An alternative biomaterial designed to improve skin healing.
    Komatsu D; Mistura DV; Motta A; Domingues JA; Hausen MA; Duek E
    J Biomater Appl; 2017 Sep; 32(3):311-320. PubMed ID: 28707999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun poly(L-lactide-co-acryloyl carbonate) fiber scaffolds with a mechanically stable crimp structure for ligament tissue engineering.
    Chen F; Hayami JW; Amsden BG
    Biomacromolecules; 2014 May; 15(5):1593-601. PubMed ID: 24697661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastomeric Electrospun Scaffolds of a Biodegradable Aliphatic Copolyester Containing PEG-Like Sequences for Dynamic Culture of Human Endothelial Cells.
    Fusaro L; Gualandi C; Antonioli D; Soccio M; Liguori A; Laus M; Lotti N; Boccafoschi F; Focarete ML
    Biomolecules; 2020 Nov; 10(12):. PubMed ID: 33266333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep-resistant porous structures based on stereo-complex forming triblock copolymers of 1,3-trimethylene carbonate and lactides.
    Zhang Z; Grijpma DW; Feijen J
    J Mater Sci Mater Med; 2004 Apr; 15(4):381-5. PubMed ID: 15332603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering.
    Prabhakaran MP; Kai D; Ghasemi-Mobarakeh L; Ramakrishna S
    Biomed Mater; 2011 Oct; 6(5):055001. PubMed ID: 21813957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering.
    Bao M; Lou X; Zhou Q; Dong W; Yuan H; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2611-21. PubMed ID: 24476093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An innovative occluder for cardiac defect: 3D printing and a biocompatibility research based on self-developed bioabsorbable material-LA-GA-TMC.
    Sun Y; Xia Y; Zhang X; Li W; Xing Q
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2108-2118. PubMed ID: 31961054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.