These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 21618011)
1. A gall-inducing arthropod drives declines in canopy tree photosynthesis. Patankar R; Thomas SC; Smith SM Oecologia; 2011 Nov; 167(3):701-9. PubMed ID: 21618011 [TBL] [Abstract][Full Text] [Related]
2. Impacts of a spring heat wave on canopy processes in a northern hardwood forest. Filewod B; Thomas SC Glob Chang Biol; 2014 Feb; 20(2):360-71. PubMed ID: 24038752 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees. Thomas SC Tree Physiol; 2010 May; 30(5):555-73. PubMed ID: 20335160 [TBL] [Abstract][Full Text] [Related]
4. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions. Schaub M; Skelly JM; Zhang JW; Ferdinand JA; Savage JE; Stevenson RE; Davis DD; Steiner KC Environ Pollut; 2005 Feb; 133(3):553-67. PubMed ID: 15519730 [TBL] [Abstract][Full Text] [Related]
5. Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple. Paquette A; Fontaine B; Berninger F; Dubois K; Lechowicz MJ; Messier C; Posada JM; Valladares F; Brisson J Tree Physiol; 2012 Nov; 32(11):1339-47. PubMed ID: 23076822 [TBL] [Abstract][Full Text] [Related]
6. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest. Coble AP; Cavaleri MA Tree Physiol; 2014 Feb; 34(2):146-58. PubMed ID: 24531298 [TBL] [Abstract][Full Text] [Related]
7. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Coble AP; Cavaleri MA Oecologia; 2015 Apr; 177(4):1131-43. PubMed ID: 25596955 [TBL] [Abstract][Full Text] [Related]
8. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness. Coble AP; Cavaleri MA Tree Physiol; 2017 Oct; 37(10):1337-1351. PubMed ID: 28338906 [TBL] [Abstract][Full Text] [Related]
9. No evidence that chronic nitrogen additions increase photosynthesis in mature sugar maple forests. Talhelm AF; Pregitzer KS; Burton AJ Ecol Appl; 2011 Oct; 21(7):2413-24. PubMed ID: 22073632 [TBL] [Abstract][Full Text] [Related]
10. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest. Fotis AT; Curtis PS Tree Physiol; 2017 Oct; 37(10):1426-1435. PubMed ID: 28100711 [TBL] [Abstract][Full Text] [Related]
11. Seasonal patterns of cytokinins and microclimate and the mediation of gas exchange among canopy layers of mature Acer saccharum trees. Reeves I; Emery RJ Tree Physiol; 2007 Nov; 27(11):1635-45. PubMed ID: 17669753 [TBL] [Abstract][Full Text] [Related]
12. Gall- and erineum-forming Eriophyes mites alter photosynthesis and volatile emissions in an infection severity-dependent manner in broad-leaved trees Alnus glutinosa and Tilia cordata. Jiang Y; Ye J; Veromann-Jürgenson LL; Niinemets Ü Tree Physiol; 2021 Jul; 41(7):1122-1142. PubMed ID: 33367874 [TBL] [Abstract][Full Text] [Related]
13. Responses of deciduous broadleaf trees to defoliation in a CO2 enriched atmosphere. Volin JC; Kruger EL; Lindroth RL Tree Physiol; 2002 May; 22(7):435-48. PubMed ID: 11986047 [TBL] [Abstract][Full Text] [Related]
14. Leaf-level acclimation to gap creation in mature Acer saccharum trees. Jones TA; Thomas SC Tree Physiol; 2007 Feb; 27(2):281-90. PubMed ID: 17241970 [TBL] [Abstract][Full Text] [Related]
15. Shade adaptation and shade tolerance in saplings of three Acer species from eastern North America. Lei TT; Lechowicz MJ Oecologia; 1990 Sep; 84(2):224-228. PubMed ID: 28312756 [TBL] [Abstract][Full Text] [Related]
16. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest. Coble AP; VanderWall B; Mau A; Cavaleri MA Tree Physiol; 2016 Sep; 36(9):1077-91. PubMed ID: 27246164 [TBL] [Abstract][Full Text] [Related]
17. Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany's largest connected deciduous forest. Sobek S; Scherber C; Steffan-Dewenter I; Tscharntke T Oecologia; 2009 May; 160(2):279-88. PubMed ID: 19238448 [TBL] [Abstract][Full Text] [Related]
18. Responses of Acer saccharum canopy trees and saplings to P, K and lime additions under high N deposition. Gradowski T; Thomas SC Tree Physiol; 2008 Feb; 28(2):173-85. PubMed ID: 18055428 [TBL] [Abstract][Full Text] [Related]
19. Effects of Nitrogen Fertilization on Potato Leafhopper (Hemiptera: Cicadellidae) and Maple Spider Mite (Acari: Tetranychidae) on Nursery-Grown Maples. Prado J; Quesada C; Gosney M; Mickelbart MV; Sadof C J Econ Entomol; 2015 Jun; 108(3):1221-7. PubMed ID: 26470249 [TBL] [Abstract][Full Text] [Related]
20. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Larson KC Oecologia; 1998 Jun; 115(1-2):161-166. PubMed ID: 28308447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]