These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 21618011)
21. Structural differences and functional similarities between two sugar maple (Acer saccharum) stands. Raulier F; Bernier PY; Ung CH; Boutin R Tree Physiol; 2002 Nov; 22(15-16):1147-56. PubMed ID: 12414374 [TBL] [Abstract][Full Text] [Related]
22. Large ontogenetic declines in intra-crown leaf area index in two temperate deciduous tree species. Nock CA; Caspersen JP; Thomas SC Ecology; 2008 Mar; 89(3):744-53. PubMed ID: 18459337 [TBL] [Abstract][Full Text] [Related]
23. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed. Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975 [TBL] [Abstract][Full Text] [Related]
24. An experimental assessment of biodiversity and species turnover in terrestrial vs canopy leaf litter. Fagan LL; Didham RK; Winchester NN; Behan-Pelletier V; Clayton M; Lindquist E; Ring RA Oecologia; 2006 Mar; 147(2):335-47. PubMed ID: 16228247 [TBL] [Abstract][Full Text] [Related]
25. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees. Sendall KM; Reich PB Tree Physiol; 2013 Jul; 33(7):713-29. PubMed ID: 23872734 [TBL] [Abstract][Full Text] [Related]
26. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756 [TBL] [Abstract][Full Text] [Related]
27. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Köstner B; Falge E; Tenhunen JD Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028 [TBL] [Abstract][Full Text] [Related]
28. Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees. Abdul-Hamid H; Mencuccini M Tree Physiol; 2009 Jan; 29(1):27-38. PubMed ID: 19203930 [TBL] [Abstract][Full Text] [Related]
29. Changes in leaf physiology caused by Calacarus heveae (Acari, Eriophyidae) on rubber tree. Daud RD; de Cássia Conforto E; Feres RJ Exp Appl Acarol; 2012 Jun; 57(2):127-37. PubMed ID: 22527832 [TBL] [Abstract][Full Text] [Related]
30. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods. Parker WC; Dey DC Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311 [TBL] [Abstract][Full Text] [Related]
31. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest. Augspurger CK; Bartlett EA Tree Physiol; 2003 Jun; 23(8):517-25. PubMed ID: 12730043 [TBL] [Abstract][Full Text] [Related]
32. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests. Wu J; Serbin SP; Xu X; Albert LP; Chen M; Meng R; Saleska SR; Rogers A Glob Chang Biol; 2017 Nov; 23(11):4814-4827. PubMed ID: 28418158 [TBL] [Abstract][Full Text] [Related]
33. Modeling intra-crown and intra-canopy interactions in red maple: assessment of light transfer on carbon dioxide and water vapor exchange. Bauerle WL; Bowden JD; McLeod MF; Toler JE Tree Physiol; 2004 May; 24(5):589-97. PubMed ID: 14996663 [TBL] [Abstract][Full Text] [Related]
34. Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States. Lahr EC; Dunn RR; Frank SD PLoS One; 2018; 13(5):e0197866. PubMed ID: 29795659 [TBL] [Abstract][Full Text] [Related]
35. Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest. Halman JM; Schaberg PG; Hawley GJ; Pardo LH; Fahey TJ Tree Physiol; 2013 Nov; 33(11):1242-51. PubMed ID: 24300338 [TBL] [Abstract][Full Text] [Related]
36. Size dependency of photosynthetic water- and nitrogen-use efficiency and hydraulic limitation in Acer mono. Nabeshima E; Hiura T Tree Physiol; 2004 Jul; 24(7):745-52. PubMed ID: 15123446 [TBL] [Abstract][Full Text] [Related]
37. Do interspecific differences in sapling growth traits contribute to the co-dominance of Acer saccharum and Fagus grandifolia? Takahashi K; Lechowicz MJ Ann Bot; 2008 Jan; 101(1):103-9. PubMed ID: 17942590 [TBL] [Abstract][Full Text] [Related]
38. Large-scale synchrony of gap dynamics and the distribution of understory tree species in maple-beech forests. Gravel D; Beaudet M; Messier C Oecologia; 2010 Jan; 162(1):153-61. PubMed ID: 19669164 [TBL] [Abstract][Full Text] [Related]
39. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Ellsworth DS; Reich PB Oecologia; 1993 Nov; 96(2):169-178. PubMed ID: 28313412 [TBL] [Abstract][Full Text] [Related]
40. Anthocyanins act as a sugar-buffer and an alternative electron sink in response to starch depletion during leaf senescence: a case study on a typical anthocyanic tree species, Acer japonicum. Kitao M; Yazaki K; Tobita H; Agathokleous E; Kishimoto J; Takabayashi A; Tanaka R J Exp Bot; 2024 Jun; 75(11):3521-3541. PubMed ID: 38469677 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]