These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21618143)

  • 1. Indigestible dextrin stimulates glucoamylase production in submerged culture of Aspergillus kawachii.
    Sugimoto T; Horaguchi K; Shoji H
    J Ind Microbiol Biotechnol; 2011 Dec; 38(12):1985-91. PubMed ID: 21618143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indigestible dextrin is an excellent inducer for α-amylase, α-glucosidase and glucoamylase production in a submerged culture of Aspergillus oryzae.
    Sugimoto T; Shoji H
    Biotechnol Lett; 2012 Feb; 34(2):347-51. PubMed ID: 22009575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of multiple extracellular enzyme activities by novel submerged culture of Aspergillus kawachii for ethanol production from raw cassava flour.
    Sugimoto T; Makita T; Watanabe K; Shoji H
    J Ind Microbiol Biotechnol; 2012 Apr; 39(4):605-12. PubMed ID: 22072435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of glucoamylase by adsorption on carbon supports and its application for heterogeneous hydrolysis of dextrin.
    Kovalenko GA; Perminova LV
    Carbohydr Res; 2008 May; 343(7):1202-11. PubMed ID: 18346718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture.
    Withers JM; Swift RJ; Wiebe MG; Robson GD; Punt PJ; van den Hondel CA; Trinci AP
    Biotechnol Bioeng; 1998 Aug; 59(4):407-18. PubMed ID: 10099354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous production of glucoamylase and acid-stable alpha-amylase using novel submerged culture of Aspergillus kawachii NBRC4308.
    Shoji H; Sugimoto T; Hosoi K; Shibata K; Tanabe M; Kawatsura K
    J Biosci Bioeng; 2007 Feb; 103(2):203-5. PubMed ID: 17368406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth-rate-independent production of recombinant glucoamylase by Fusarium venenatum JeRS 325.
    Wiebe MG; Robson GD; Shuster J; Trinci AP
    Biotechnol Bioeng; 2000 May; 68(3):245-51. PubMed ID: 10745192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel glucoamylase activated by manganese and calcium produced in submerged fermentation by Aspergillus phoenicis.
    Benassi VM; Pasin TM; Facchini FD; Jorge JA; Teixeira de Moraes Polizeli Mde L
    J Basic Microbiol; 2014 May; 54(5):333-9. PubMed ID: 23681744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity.
    Bocking SP; Wiebe MG; Robson GD; Hansen K; Christiansen LH; Trinci AP
    Biotechnol Bioeng; 1999 Dec; 65(6):638-48. PubMed ID: 10550770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cell engineering approach to enzyme-based fed-batch fermentation.
    Sibley M; Ward JM
    Microb Cell Fact; 2021 Jul; 20(1):146. PubMed ID: 34303374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and cost-reduced glucoamylase fed-batch production with alternative carbon sources.
    Luo H; Liu H; He Z; Zhou C; Shi Z
    J Microbiol Biotechnol; 2015 Feb; 25(2):185-95. PubMed ID: 25262682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds.
    Farid MA; El-Enshasy HA; Noor El-Deen AM
    J Basic Microbiol; 2002; 42(3):162-71. PubMed ID: 12111743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger.
    Pedersen H; Beyer M; Nielsen J
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):272-7. PubMed ID: 10772465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Immobilized glucoamylase: A biocatalyst of dextrin hydrolysis].
    Kovalenko GA; Perminova LV; Plaksin GV; Chuenko TV; Komova OV; Rudina NA
    Prikl Biokhim Mikrobiol; 2006; 42(2):163-8. PubMed ID: 16761568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoglucose production from raw starchy materials based on a two-stage enzymatic system.
    Gromada A; Fiedurek J; Szczodrak J
    Pol J Microbiol; 2008; 57(2):141-8. PubMed ID: 18646402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the carbohydrate moiety of a glucoamylase from Aspergillus awamori var. kawachi in the digestion of raw starch.
    Goto M; Kuwano E; Kanlayakrit W; Hayashida S
    Biosci Biotechnol Biochem; 1995 Jan; 59(1):16-20. PubMed ID: 7765970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of different substrates on the production of a mutant thermostable glucoamylase in submerged fermentation.
    Pavezzi FC; Carneiro AA; Bocchini-Martins DA; Alves-Prado HF; Ferreira H; Martins PM; Gomes E; da Silva R
    Appl Biochem Biotechnol; 2011 Jan; 163(1):14-24. PubMed ID: 20414741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pore diffusion limitation on dextrin hydrolysis by immobilized glucoamylase.
    Lee DD; Lee GK; Reilly PJ; Lee YY
    Biotechnol Bioeng; 1980 Jan; 22(1):1-17. PubMed ID: 6985801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abomasal glucose, maize starch and maize dextrin infusions in cattle: small-intestinal disappearance, net portal glucose flux and ileal oligosaccharide flow.
    Kreikemeier KK; Harmon DL
    Br J Nutr; 1995 May; 73(5):763-72. PubMed ID: 7626594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Construction and application of black-box model for glucoamylase production by Aspergillus niger].
    Li L; Lu H; Xia J; Chu J; Zhuang Y; Zhang S
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1089-98. PubMed ID: 26647584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.