These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21618381)

  • 1. Teaching argumentation and scientific discourse using the ribosomal peptidyl transferase reaction.
    Johnson RJ
    Biochem Mol Biol Educ; 2011; 39(3):185-90. PubMed ID: 21618381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanism of peptide bond formation on the ribosome--controversions].
    Bakowska-Zywicka K; Tyczewska A; Twardowski T
    Postepy Biochem; 2006; 52(2):166-72. PubMed ID: 17078506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arguing to learn in science: the role of collaborative, critical discourse.
    Osborne J
    Science; 2010 Apr; 328(5977):463-6. PubMed ID: 20413492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic-based Life: An active learning assignment for teaching scientific discourse.
    Jeremy Johnson R
    Biochem Mol Biol Educ; 2017 Jan; 45(1):40-45. PubMed ID: 27353527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide.
    Polacek N; Gaynor M; Yassin A; Mankin AS
    Nature; 2001 May; 411(6836):498-501. PubMed ID: 11373685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome?
    Sharma PK; Xiang Y; Kato M; Warshel A
    Biochemistry; 2005 Aug; 44(34):11307-14. PubMed ID: 16114867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.
    Schmeing TM; Huang KS; Kitchen DE; Strobel SA; Steitz TA
    Mol Cell; 2005 Nov; 20(3):437-48. PubMed ID: 16285925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ribosomal peptidyl transferase.
    Beringer M; Rodnina MV
    Mol Cell; 2007 May; 26(3):311-21. PubMed ID: 17499039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome.
    Carrasco N; Hiller DA; Strobel SA
    Biochemistry; 2011 Dec; 50(48):10491-8. PubMed ID: 22035282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosomal tolerance and peptide bond formation.
    Yonath A
    Biol Chem; 2003; 384(10-11):1411-9. PubMed ID: 14669983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry at the active site of the ribosome: structural and functional implications.
    Agmon I; Bashan A; Zarivach R; Yonath A
    Biol Chem; 2005 Sep; 386(9):833-44. PubMed ID: 16164408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of chirality of the sugar ring in the ribosomal peptide synthesis.
    Thirumoorthy K; Nandi N
    J Phys Chem B; 2008 Jul; 112(30):9187-95. PubMed ID: 18610967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio QM/MM free energy simulations of peptide bond formation in the ribosome support an eight-membered ring reaction mechanism.
    Xu J; Zhang JZ; Xiang Y
    J Am Chem Soc; 2012 Oct; 134(39):16424-9. PubMed ID: 22953775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Peptidyltransferase center of ribosomes. Structure and relationship to other ribosomal functions].
    Kukhanova MK; KraevskiÄ­ AA; Gottikh BP
    Mol Biol (Mosk); 1977; 11(6):1357-76. PubMed ID: 36555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase.
    Watanabe K; Toh Y; Suto K; Shimizu Y; Oka N; Wada T; Tomita K
    Nature; 2007 Oct; 449(7164):867-71. PubMed ID: 17891155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2'-OH at A2451 of 23S rRNA.
    Erlacher MD; Lang K; Wotzel B; Rieder R; Micura R; Polacek N
    J Am Chem Soc; 2006 Apr; 128(13):4453-9. PubMed ID: 16569023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How ribosomes make peptide bonds.
    Rodnina MV; Beringer M; Wintermeyer W
    Trends Biochem Sci; 2007 Jan; 32(1):20-6. PubMed ID: 17157507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide bond formation does not involve acid-base catalysis by ribosomal residues.
    Bieling P; Beringer M; Adio S; Rodnina MV
    Nat Struct Mol Biol; 2006 May; 13(5):423-8. PubMed ID: 16648860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal crystallography: peptide bond formation and its inhibition.
    Bashan A; Zarivach R; Schluenzen F; Agmon I; Harms J; Auerbach T; Baram D; Berisio R; Bartels H; Hansen HA; Fucini P; Wilson D; Peretz M; Kessler M; Yonath A
    Biopolymers; 2003 Sep; 70(1):19-41. PubMed ID: 12925991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.