These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21618642)

  • 61. The Mn1 transcription factor acts upstream of Tbx22 and preferentially regulates posterior palate growth in mice.
    Liu W; Lan Y; Pauws E; Meester-Smoor MA; Stanier P; Zwarthoff EC; Jiang R
    Development; 2008 Dec; 135(23):3959-68. PubMed ID: 18948418
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The regulation of endogenous retinoic acid level through CYP26B1 is required for elevation of palatal shelves.
    Okano J; Kimura W; Papaionnou VE; Miura N; Yamada G; Shiota K; Sakai Y
    Dev Dyn; 2012 Nov; 241(11):1744-56. PubMed ID: 22972661
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Palatal development in Twirler mice.
    Gong SG; Eulenberg RL
    Cleft Palate Craniofac J; 2001 Nov; 38(6):622-8. PubMed ID: 11681996
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Comparative morphometrical study on development of palatal shelves in cleft and non-cleft palate mice].
    Cai ZG; von Domarus H; Engel E
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2003 May; 38(3):182-4. PubMed ID: 12887793
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The distribution of syndecan during murine secondary palate morphogenesis.
    Brinkley L; Morris-Wiman J; Bernfield M
    J Craniofac Genet Dev Biol; 1992; 12(2):82-9. PubMed ID: 1613077
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis.
    d'Amaro R; Scheidegger R; Blumer S; Pazera P; Katsaros C; Graf D; Chiquet M
    Front Physiol; 2012; 3():377. PubMed ID: 23055981
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Role of apoptosis in retinoic acid-induced cleft palate.
    Choi JW; Park HW; Kwon YJ; Park BY
    J Craniofac Surg; 2011 Sep; 22(5):1567-71. PubMed ID: 21959388
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tbx22 expressions during palatal development in fetuses with glucocorticoid-/alcohol-induced C57BL/6N cleft palates.
    Kim SM; Lee JH; Jabaiti S; Lee SK; Choi JY
    J Craniofac Surg; 2009 Sep; 20(5):1316-26. PubMed ID: 19816249
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modulation of BMP signaling by Noggin is required for the maintenance of palatal epithelial integrity during palatogenesis.
    He F; Xiong W; Wang Y; Matsui M; Yu X; Chai Y; Klingensmith J; Chen Y
    Dev Biol; 2010 Nov; 347(1):109-21. PubMed ID: 20727875
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Palatal shelf reorientation in hamster embryos following treatment with 5-fluorouracil.
    Shah RM; Chen YP; Burdett DN
    Histol Histopathol; 1989 Oct; 4(4):449-56. PubMed ID: 2520478
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Changes in cell distribution during mouse secondary palate closure in vivo and in vitro. I. Epithelial cells.
    Brinkley LL
    Dev Biol; 1984 Mar; 102(1):216-27. PubMed ID: 6698305
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Changes in the composition of glycosaminoglycans during normal palatogenesis in the rat.
    Singh GD; Moxham BJ; Langley MS; Waddington RJ; Embery G
    Arch Oral Biol; 1994 May; 39(5):401-7. PubMed ID: 8060263
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development.
    Casey LM; Lan Y; Cho ES; Maltby KM; Gridley T; Jiang R
    Dev Dyn; 2006 Jul; 235(7):1830-44. PubMed ID: 16607638
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice.
    Alappat SR; Zhang Z; Suzuki K; Zhang X; Liu H; Jiang R; Yamada G; Chen Y
    Dev Biol; 2005 Jan; 277(1):102-13. PubMed ID: 15572143
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of the secondary palate in man.
    Luke DA
    Acta Anat (Basel); 1976; 94(4):596-608. PubMed ID: 941675
    [TBL] [Abstract][Full Text] [Related]  

  • 76. In vitro activation of adenylate cyclase by norepinephrine, parathyroid hormone, calcitonin, and prostaglandins in the developing maxillary process and palatal shelf of the golden hamster.
    Palmer GC; Palmer SJ; Waterman RE; Palmer SM
    Pediatr Pharmacol (New York); 1980; 1(1):45-54. PubMed ID: 7346731
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regional heterogeneity in the developing palate: morphological and molecular evidence for normal and abnormal palatogenesis.
    Okano J; Suzuki S; Shiota K
    Congenit Anom (Kyoto); 2006 Jun; 46(2):49-54. PubMed ID: 16732762
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Width and elevation of the palatal shelves in unoperated unilateral and bilateral cleft lip and palate patients in the permanent dentition.
    Latief BS; Lekkas KC; Schols JG; Fudalej PS; Kuijpers MA
    J Anat; 2012 Mar; 220(3):263-70. PubMed ID: 22256789
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dislocated Tongue Muscle Attachment and Cleft Palate Formation.
    Kouskoura T; El Fersioui Y; Angelini M; Graf D; Katsaros C; Chiquet M
    J Dent Res; 2016 Apr; 95(4):453-9. PubMed ID: 26701347
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of diazepam on the embryonic development of the palate in the rat.
    Katz RA
    J Craniofac Genet Dev Biol; 1988; 8(2):155-66. PubMed ID: 3182970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.