These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21618924)

  • 1. A test of the mismatch hypothesis: How is timing of reproduction related to food abundance in an aerial insectivore?
    Dunn PO; Winkler DW; Whittingham LA; Hannon SJ; Robertson RJ
    Ecology; 2011 Feb; 92(2):450-61. PubMed ID: 21618924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Birds advancing lay dates with warming springs face greater risk of chick mortality.
    Shipley JR; Twining CW; Taff CC; Vitousek MN; Flack A; Winkler DW
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25590-25594. PubMed ID: 32989166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore ( Tachycineta bicolor).
    Cox AR; Robertson RJ; Lendvai ÁZ; Everitt K; Bonier F
    Proc Biol Sci; 2019 Mar; 286(1898):20190018. PubMed ID: 30862285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated population models reveal local weather conditions are the key drivers of population dynamics in an aerial insectivore.
    Weegman MD; Arnold TW; Dawson RD; Winkler DW; Clark RG
    Oecologia; 2017 Sep; 185(1):119-130. PubMed ID: 28573381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nest boxes increase reproductive output for Tree Swallows in a forest grassland matrix in central British Columbia.
    Norris AR; Aitken KEH; Martin K; Pokorny S
    PLoS One; 2018; 13(10):e0204226. PubMed ID: 30303975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-fledging quality and recruitment in an aerial insectivore reflect dynamics of insects, wetlands and climate.
    Berzins LL; Mazer AK; Morrissey CA; Clark RG
    Oecologia; 2021 May; 196(1):89-100. PubMed ID: 33885979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal patterns in tree swallow prey (Diptera) abundance are affected by agricultural intensification.
    Paquette SR; Garant D; Pelletier F; Bélisle M
    Ecol Appl; 2013 Jan; 23(1):122-33. PubMed ID: 23495641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird.
    Visser ME; Holleman LJ; Gienapp P
    Oecologia; 2006 Feb; 147(1):164-72. PubMed ID: 16328547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird.
    Seress G; Hammer T; Bókony V; Vincze E; Preiszner B; Pipoly I; Sinkovics C; Evans KL; Liker A
    Ecol Appl; 2018 Jul; 28(5):1143-1156. PubMed ID: 29679462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wind and rain are the primary climate factors driving changing phenology of an aerial insectivore.
    Irons RD; Harding Scurr A; Rose AP; Hagelin JC; Blake T; Doak DF
    Proc Biol Sci; 2017 Apr; 284(1853):. PubMed ID: 28446701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproductive success and contaminant associations in tree swallows (Tachycineta bicolor) used to assess a Beneficial Use Impairment in U.S. and Binational Great Lakes' Areas of Concern.
    Custer CM; Custer TW; Etterson MA; Dummer PM; Goldberg D; Franson JC
    Ecotoxicology; 2018 May; 27(4):457-476. PubMed ID: 29524053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal patterns in reproductive success of temperate-breeding birds: Experimental tests of the date and quality hypotheses.
    Harriman VB; Dawson RD; Bortolotti LE; Clark RG
    Ecol Evol; 2017 Apr; 7(7):2122-2132. PubMed ID: 28405278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The earlier the better? Nesting timing and reproductive success in subalpine cavity-nesting bees.
    Wong LH; Forrest JRK
    J Anim Ecol; 2021 May; 90(5):1353-1366. PubMed ID: 33656748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of seasonal breeding in birds, with particular reference to New Zealand birds.
    Cockrem JF
    Reprod Fertil Dev; 1995; 7(1):1-19. PubMed ID: 7569047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change and micro-geographic variation in laying date.
    Møller AP
    Oecologia; 2008 Apr; 155(4):845-57. PubMed ID: 18224340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of climate change on laying dates, clutch size and productivity of Eurasian Coots Fulica atra.
    Halupka L; Czyż B; Macias Dominguez CM
    Int J Biometeorol; 2020 Nov; 64(11):1857-1863. PubMed ID: 32940763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Great tits lay increasingly smaller clutches than selected for: a study of climate- and density-related changes in reproductive traits.
    Ahola MP; Laaksonen T; Eeva T; Lehikoinen E
    J Anim Ecol; 2009 Nov; 78(6):1298-306. PubMed ID: 19682140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine.
    Grüebler MU; Naef-Daenzer B
    Ecology; 2008 Oct; 89(10):2736-45. PubMed ID: 18959311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird.
    Hidalgo Aranzamendi N; Hall ML; Kingma SA; van de Pol M; Peters A
    J Anim Ecol; 2019 Nov; 88(11):1799-1811. PubMed ID: 31407349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. No evidence for fitness signatures consistent with increasing trophic mismatch over 30 years in a population of European shag Phalacrocorax aristotelis.
    Keogan K; Lewis S; Howells RJ; Newell MA; Harris MP; Burthe S; Phillips RA; Wanless S; Phillimore AB; Daunt F
    J Anim Ecol; 2021 Feb; 90(2):432-446. PubMed ID: 33070317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.