BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21619065)

  • 21. The UreEF fusion protein provides a soluble and functional form of the UreF urease accessory protein.
    Kim JK; Mulrooney SB; Hausinger RP
    J Bacteriol; 2006 Dec; 188(24):8413-20. PubMed ID: 17041056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of Proteus mirabilis urease apoenzyme and accessory proteins identified with yeast two-hybrid technology.
    Heimer SR; Mobley HL
    J Bacteriol; 2001 Feb; 183(4):1423-33. PubMed ID: 11157956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Klebsiella aerogenes UreF: identification of the UreG binding site and role in enhancing the fidelity of urease activation.
    Boer JL; Hausinger RP
    Biochemistry; 2012 Mar; 51(11):2298-308. PubMed ID: 22369361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions.
    Cussac V; Ferrero RL; Labigne A
    J Bacteriol; 1992 Apr; 174(8):2466-73. PubMed ID: 1313413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the Klebsiella aerogenes urease accessory protein UreD in fusion with the maltose binding protein.
    Carter EL; Hausinger RP
    J Bacteriol; 2010 May; 192(9):2294-304. PubMed ID: 20207756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of UreG, identification of a UreD-UreF-UreG complex, and evidence suggesting that a nucleotide-binding site in UreG is required for in vivo metallocenter assembly of Klebsiella aerogenes urease.
    Moncrief MB; Hausinger RP
    J Bacteriol; 1997 Jul; 179(13):4081-6. PubMed ID: 9209019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro activation of urease apoprotein and role of UreD as a chaperone required for nickel metallocenter assembly.
    Park IS; Carr MB; Hausinger RP
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3233-7. PubMed ID: 7909161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease.
    Fong YH; Wong HC; Yuen MH; Lau PH; Chen YW; Wong KB
    PLoS Biol; 2013 Oct; 11(10):e1001678. PubMed ID: 24115911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and activation properties of UreD-UreF-urease apoprotein complexes.
    Moncrief MB; Hausinger RP
    J Bacteriol; 1996 Sep; 178(18):5417-21. PubMed ID: 8808930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Helicobacter pylori hydrogenase accessory protein HypA and urease accessory protein UreG compete with each other for UreE recognition.
    Benoit SL; McMurry JL; Hill SA; Maier RJ
    Biochim Biophys Acta; 2012 Oct; 1820(10):1519-25. PubMed ID: 22698670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical studies on Mycobacterium tuberculosis UreG and comparative modeling reveal structural and functional conservation among the bacterial UreG family.
    Zambelli B; Musiani F; Savini M; Tucker P; Ciurli S
    Biochemistry; 2007 Mar; 46(11):3171-82. PubMed ID: 17309280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delivering a toxic metal to the active site of urease.
    Nim YS; Fong IYH; Deme J; Tsang KL; Caesar J; Johnson S; Pang LTH; Yuen NMH; Ng TLC; Choi T; Wong YYH; Lea SM; Wong KB
    Sci Adv; 2023 Apr; 9(16):eadf7790. PubMed ID: 37083535
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells.
    Fantini J; Garmy N; Yahi N
    Biochemistry; 2006 Sep; 45(36):10957-62. PubMed ID: 16953581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of conserved nucleotide-binding domains in accessory proteins, HypB and UreG, in the maturation of nickel-enzymes required for efficient Helicobacter pylori colonization.
    Mehta N; Benoit S; Maier RJ
    Microb Pathog; 2003 Nov; 35(5):229-34. PubMed ID: 14521881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular modeling of Helicobacter pylori arginase and the inhibitor coordination interactions.
    Azizian H; Bahrami H; Pasalar P; Amanlou M
    J Mol Graph Model; 2010 Apr; 28(7):626-35. PubMed ID: 20080052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Helicobacter pylori genome: from sequence analysis to structural and functional predictions.
    Pawłowski K; Zhang B; Rychlewski L; Godzik A
    Proteins; 1999 Jul; 36(1):20-30. PubMed ID: 10373003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UreE stimulation of GTP-dependent urease activation in the UreD-UreF-UreG-urease apoprotein complex.
    Soriano A; Colpas GJ; Hausinger RP
    Biochemistry; 2000 Oct; 39(40):12435-40. PubMed ID: 11015224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structures of apo and metal-bound forms of the UreE protein from Helicobacter pylori: role of multiple metal binding sites.
    Shi R; Munger C; Asinas A; Benoit SL; Miller E; Matte A; Maier RJ; Cygler M
    Biochemistry; 2010 Aug; 49(33):7080-8. PubMed ID: 20681615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of CagZ, a protein from the Helicobacter pylori pathogenicity island that encodes for a type IV secretion system.
    Cendron L; Seydel A; Angelini A; Battistutta R; Zanotti G
    J Mol Biol; 2004 Jul; 340(4):881-9. PubMed ID: 15223328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a nickel chaperone, HypA, from Helicobacter pylori reveals two distinct metal binding sites.
    Xia W; Li H; Sze KH; Sun H
    J Am Chem Soc; 2009 Jul; 131(29):10031-40. PubMed ID: 19621959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.