These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
764 related articles for article (PubMed ID: 21619078)
1. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078 [TBL] [Abstract][Full Text] [Related]
2. Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS). Doucet A; Kleifeld O; Kizhakkedathu JN; Overall CM Methods Mol Biol; 2011; 753():273-87. PubMed ID: 21604129 [TBL] [Abstract][Full Text] [Related]
3. Co- and post-translational modifications of the 26S proteasome in yeast. Kikuchi J; Iwafune Y; Akiyama T; Okayama A; Nakamura H; Arakawa N; Kimura Y; Hirano H Proteomics; 2010 Aug; 10(15):2769-79. PubMed ID: 20486117 [TBL] [Abstract][Full Text] [Related]
4. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
5. Preparative peptide isoelectric focusing as a tool for improving the identification of lysine-acetylated peptides from complex mixtures. Xie H; Bandhakavi S; Roe MR; Griffin TJ J Proteome Res; 2007 May; 6(5):2019-26. PubMed ID: 17397211 [TBL] [Abstract][Full Text] [Related]
6. Predicting N-terminal acetylation based on feature selection method. Cai YD; Lu L Biochem Biophys Res Commun; 2008 Aug; 372(4):862-5. PubMed ID: 18533108 [TBL] [Abstract][Full Text] [Related]
7. A proteome-scale study on in vivo protein Nα-acetylation using an optimized method. Zhang X; Ye J; Engholm-Keller K; Højrup P Proteomics; 2011 Jan; 11(1):81-93. PubMed ID: 21182196 [TBL] [Abstract][Full Text] [Related]
8. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. Falb M; Aivaliotis M; Garcia-Rizo C; Bisle B; Tebbe A; Klein C; Konstantinidis K; Siedler F; Pfeiffer F; Oesterhelt D J Mol Biol; 2006 Oct; 362(5):915-24. PubMed ID: 16950390 [TBL] [Abstract][Full Text] [Related]
9. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983 [TBL] [Abstract][Full Text] [Related]
10. Amino acid sequence determination of protein biomarkers of Campylobacter upsaliensis and C. helveticus by "composite" sequence proteomic analysis. Fagerquist CK J Proteome Res; 2007 Jul; 6(7):2539-49. PubMed ID: 17508732 [TBL] [Abstract][Full Text] [Related]
11. Lysine 3 acetylation regulates the phosphorylation of yeast 6-phosphofructo-2-kinase under hypo-osmotic stress. Dihazi H; Kessler R; Müller GA; Eschrich K Biol Chem; 2005 Sep; 386(9):895-900. PubMed ID: 16164414 [TBL] [Abstract][Full Text] [Related]
12. Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55. Venne AS; Vögtle FN; Meisinger C; Sickmann A; Zahedi RP J Proteome Res; 2013 Sep; 12(9):3823-30. PubMed ID: 23964590 [TBL] [Abstract][Full Text] [Related]
14. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC-MS/MS. Shen PT; Hsu JL; Chen SH Anal Chem; 2007 Dec; 79(24):9520-30. PubMed ID: 18001127 [TBL] [Abstract][Full Text] [Related]
15. The use of proteotypic peptide libraries for protein identification. Craig R; Cortens JP; Beavis RC Rapid Commun Mass Spectrom; 2005; 19(13):1844-50. PubMed ID: 15945033 [TBL] [Abstract][Full Text] [Related]
16. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p. Bailey UM; Schulz BL J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304 [TBL] [Abstract][Full Text] [Related]
17. Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Staes A; Van Damme P; Helsens K; Demol H; Vandekerckhove J; Gevaert K Proteomics; 2008 Apr; 8(7):1362-70. PubMed ID: 18318009 [TBL] [Abstract][Full Text] [Related]
18. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
19. Proteome profiling of the green sulfur bacterium Chlorobaculum tepidum by N-terminal proteomics. Kouyianou K; De Bock PJ; Colaert N; Nikolaki A; Aktoudianaki A; Gevaert K; Tsiotis G Proteomics; 2012 Jan; 12(1):63-7. PubMed ID: 22065552 [TBL] [Abstract][Full Text] [Related]
20. N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis. Kamita M; Kimura Y; Ino Y; Kamp RM; Polevoda B; Sherman F; Hirano H J Proteomics; 2011 Apr; 74(4):431-41. PubMed ID: 21184851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]