These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21619097)

  • 41. Fabrication of optically transparent carbon electrodes by the pyrolysis of photoresist films: approach to single-molecule spectroelectrochemistry.
    Donner S; Li HW; Yeung ES; Porter MD
    Anal Chem; 2006 Apr; 78(8):2816-22. PubMed ID: 16615798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode.
    Adams KL; Jena BK; Percival SJ; Zhang B
    Anal Chem; 2011 Feb; 83(3):920-7. PubMed ID: 21175175
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flame etching enhances the sensitivity of carbon-fiber microelectrodes.
    Strand AM; Venton BJ
    Anal Chem; 2008 May; 80(10):3708-15. PubMed ID: 18416534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves.
    Kovacs GT; Storment CW; Halks-Miller M; Belczynski CR; Della Santina CC; Lewis ER; Maluf NI
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):567-77. PubMed ID: 7927376
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays.
    Gabay T; Ben-David M; Kalifa I; Sorkin R; Abrams ZR; Ben-Jacob E; Hanein Y
    Nanotechnology; 2007 Jan; 18(3):035201. PubMed ID: 19636111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication and characterization of nonplanar microelectrode array circuits for use in arthroscopic diagnosis of cartilage diseases.
    Quenneville E; Binette JS; Garon M; Légaré A; Meunier M; Buschmann MD
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2164-73. PubMed ID: 15605864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication and characterization of laser pulled platinum microelectrodes with controlled geometry.
    Mezour MA; Morin M; Mauzeroll J
    Anal Chem; 2011 Mar; 83(6):2378-82. PubMed ID: 21323390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioinspired deposition of TiO2 thin films induced by hydrophobins.
    Santhiya D; Burghard Z; Greiner C; Jeurgens LP; Subkowski T; Bill J
    Langmuir; 2010 May; 26(9):6494-502. PubMed ID: 20121159
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu)via electrodeposition.
    Simm AO; Banks CE; Ward-Jones S; Davies TJ; Lawrence NS; Jones TG; Jiang L; Compton RG
    Analyst; 2005 Sep; 130(9):1303-11. PubMed ID: 16096678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D carbon nanofiber microelectrode arrays fabricated by plasma-assisted pyrolysis to enhance sensitivity and stability of real-time dopamine detection.
    Yi W; Yang Y; Hashemi P; Cheng MM
    Biomed Microdevices; 2016 Dec; 18(6):112. PubMed ID: 27900618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and electrical properties of (Bi(1/2)Na(1/2))TiO3 (BNT) ferroelectric thin films by liquid sprayed mist chemical vapor deposition technique.
    Kim BH; Kim SH; Kim JH; Lee KJ; Choa YH; Choi YK; Kim SS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3479-82. PubMed ID: 17252793
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of fabrication conditions on the quality of Au nanoparticle arrays on dimpled Ta templates.
    El-Sayed HA; Molero HM; Birss VI
    Nanotechnology; 2012 Nov; 23(43):435602. PubMed ID: 23059444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Shearforce-based constant-distance scanning electrochemical microscopy as fabrication tool for needle-type carbon-fiber nanoelectrodes.
    Hussien EM; Schuhmann W; Schulte A
    Anal Chem; 2010 Jul; 82(13):5900-5. PubMed ID: 20533837
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint.
    Schulte A; Chow RH
    Anal Chem; 1996 Sep; 68(17):3054-8. PubMed ID: 21619374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sonochemically fabricated microelectrode arrays for use as sensing platforms.
    Collyer SD; Davis F; Higson SP
    Sensors (Basel); 2010; 10(5):5090-132. PubMed ID: 22399926
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Bidirectional-Current CMOS Potentiostat for Fast-Scan Cyclic Voltammetry Detector Arrays.
    Dorta-Quinones CI; Huang M; Ruelas JC; Delacruz J; Apsel AB; Minch BA; Lindau M
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):894-903. PubMed ID: 29994774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films: a review.
    Etienne M; Guillemin Y; Grosso D; Walcarius A
    Anal Bioanal Chem; 2013 Feb; 405(5):1497-512. PubMed ID: 22941177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A cell electrofusion microfluidic device integrated with 3D thin-film microelectrode arrays.
    Hu N; Yang J; Qian S; Joo SW; Zheng X
    Biomicrofluidics; 2011 Sep; 5(3):34121-3412112. PubMed ID: 22662046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.