These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 21619660)
1. Fish-on-a-chip: a sensitive detection microfluidic system for Alzheimer's disease. Devadhasan JP; Kim S; An J J Biomed Sci; 2011 May; 18(1):33. PubMed ID: 21619660 [TBL] [Abstract][Full Text] [Related]
2. FISH-in-CHIPS: A Microfluidic Platform for Molecular Typing of Cancer Cells. Perez-Toralla K; Mottet G; Tulukcuoglu-Guneri E; Champ J; Bidard FC; Pierga JY; Klijanienko J; Draskovic I; Malaquin L; Viovy JL; Descroix S Methods Mol Biol; 2017; 1547():211-220. PubMed ID: 28044298 [TBL] [Abstract][Full Text] [Related]
3. FISH and chips: a review of microfluidic platforms for FISH analysis. Rodriguez-Mateos P; Azevedo NF; Almeida C; Pamme N Med Microbiol Immunol; 2020 Jun; 209(3):373-391. PubMed ID: 31965296 [TBL] [Abstract][Full Text] [Related]
4. Metaphase FISH on a chip: miniaturized microfluidic device for fluorescence in situ hybridization. Vedarethinam I; Shah P; Dimaki M; Tumer Z; Tommerup N; Svendsen WE Sensors (Basel); 2010; 10(11):9831-46. PubMed ID: 22163442 [TBL] [Abstract][Full Text] [Related]
5. Microdevice in Cellular Pathology: Microfluidic Platforms for Fluorescence in situ Hybridization and Analysis of Circulating Tumor Cells. Sato K Anal Sci; 2015; 31(9):867-73. PubMed ID: 26353951 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive and Multiple Biomarker Discrimination for Alzheimer's Disease via Plasmonic & Microfluidic Sensing Technologies. Zu L; Wang X; Liu P; Xie J; Zhang X; Liu W; Li Z; Zhang S; Li K; Giannetti A; Bi W; Chiavaioli F; Shi L; Guo T Adv Sci (Weinh); 2024 Jun; 11(24):e2308783. PubMed ID: 38509587 [TBL] [Abstract][Full Text] [Related]
7. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Sieben VJ; Debes-Marun CS; Pilarski LM; Backhouse CJ Lab Chip; 2008 Dec; 8(12):2151-6. PubMed ID: 19023479 [TBL] [Abstract][Full Text] [Related]
8. FISH and chips: chromosomal analysis on microfluidic platforms. Sieben VJ; Debes Marun CS; Pilarski PM; Kaigala GV; Pilarski LM; Backhouse CJ IET Nanobiotechnol; 2007 Jun; 1(3):27-35. PubMed ID: 17506594 [TBL] [Abstract][Full Text] [Related]
9. A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells. Kao KJ; Tai CH; Chang WH; Yeh TS; Chen TC; Lee GB Biosens Bioelectron; 2015 Jul; 69():272-9. PubMed ID: 25770459 [TBL] [Abstract][Full Text] [Related]
10. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging. Malic L; Veres T; Tabrizian M Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281 [TBL] [Abstract][Full Text] [Related]
11. Early Diagnosis of Alzheimer's Disease in Blood Using a Disposable Electrochemical Microfluidic Platform. de Oliveira TR; Erbereli CR; Manzine PR; Magalhães TNC; Balthazar MLF; Cominetti MR; Faria RC ACS Sens; 2020 Apr; 5(4):1010-1019. PubMed ID: 32207606 [TBL] [Abstract][Full Text] [Related]
12. Recent Electrokinetic and Microfluidic Strategies for Detection of Amyloid Beta Peptide Biomarkers: Towards Molecular Diagnosis of Alzheimer's Disease. Van Thanh Nguyen N; Taverna M; Smadja C; Mai TD Chem Rec; 2021 Jan; 21(1):149-161. PubMed ID: 33112020 [TBL] [Abstract][Full Text] [Related]
13. MiRNA detection at single-cell resolution using microfluidic LNA flow-FISH. Wu M; Piccini ME; Singh AK Methods Mol Biol; 2014; 1211():245-60. PubMed ID: 25218391 [TBL] [Abstract][Full Text] [Related]
14. Magnetic bead droplet immunoassay of oligomer amyloid β for the diagnosis of Alzheimer's disease using micro-pillars to enhance the stability of the oil-water interface. Kim JA; Kim M; Kang SM; Lim KT; Kim TS; Kang JY Biosens Bioelectron; 2015 May; 67():724-32. PubMed ID: 25459055 [TBL] [Abstract][Full Text] [Related]
15. Integration of FISH and Microfluidics. Rodrigues CF; Azevedo NF; Miranda JM Methods Mol Biol; 2021; 2246():249-261. PubMed ID: 33576994 [TBL] [Abstract][Full Text] [Related]
16. DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes. Chen L; Lee S; Lee M; Lim C; Choo J; Park JY; Lee S; Joo SW; Lee KH; Choi YW Biosens Bioelectron; 2008 Jul; 23(12):1878-82. PubMed ID: 18378133 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic Device for On-Chip Immunophenotyping and Cytogenetic Analysis of Rare Biological Cells. M Weerakoon-Ratnayake K; Vaidyanathan S; Larky N; Dathathreya K; Hu M; Jose J; Mog S; August K; K Godwin A; L Hupert M; A Witek M; A Soper S Cells; 2020 Feb; 9(2):. PubMed ID: 32102446 [TBL] [Abstract][Full Text] [Related]
18. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Marie R; Pedersen JN; Bauer DL; Rasmussen KH; Yusuf M; Volpi E; Flyvbjerg H; Kristensen A; Mir KU Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4893-8. PubMed ID: 23479649 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization. Wang X; Takebayashi S; Bernardin E; Gilbert DM; Chella R; Guan J Biomed Microdevices; 2012 Jun; 14(3):443-51. PubMed ID: 22231286 [TBL] [Abstract][Full Text] [Related]
20. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA. Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]