These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21620426)

  • 1. Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein-protein interactions.
    Jensen K; Osmani SA; Hamann T; Naur P; Møller BL
    Phytochemistry; 2011 Dec; 72(17):2113-23. PubMed ID: 21620426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolon formation in dhurrin biosynthesis.
    Nielsen KA; Tattersall DB; Jones PR; Møller BL
    Phytochemistry; 2008 Jan; 69(1):88-98. PubMed ID: 17706731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin.
    Bak S; Kahn RA; Nielsen HL; Moller BL; Halkier BA
    Plant Mol Biol; 1998 Feb; 36(3):393-405. PubMed ID: 9484480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses.
    Thorsøe KS; Bak S; Olsen CE; Imberty A; Breton C; Lindberg Møller B
    Plant Physiol; 2005 Oct; 139(2):664-73. PubMed ID: 16169969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.
    Kahn RA; Fahrendorf T; Halkier BA; Møller BL
    Arch Biochem Biophys; 1999 Mar; 363(1):9-18. PubMed ID: 10049494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis.
    Gnanasekaran T; Karcher D; Nielsen AZ; Martens HJ; Ruf S; Kroop X; Olsen CE; Motawie MS; Pribil M; Møller BL; Bock R; Jensen PE
    J Exp Bot; 2016 Apr; 67(8):2495-506. PubMed ID: 26969746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum.
    Laursen T; Borch J; Knudsen C; Bavishi K; Torta F; Martens HJ; Silvestro D; Hatzakis NS; Wenk MR; Dafforn TR; Olsen CE; Motawia MS; Hamberger B; Møller BL; Bassard JE
    Science; 2016 Nov; 354(6314):890-893. PubMed ID: 27856908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench).
    Blomstedt CK; O'Donnell NH; Bjarnholt N; Neale AD; Hamill JD; Møller BL; Gleadow RM
    Plant Cell Physiol; 2016 Feb; 57(2):373-86. PubMed ID: 26493517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis.
    Bak S; Olsen CE; Halkier BA; Møller BL
    Plant Physiol; 2000 Aug; 123(4):1437-48. PubMed ID: 10938360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum.
    Kahn RA; Bak S; Svendsen I; Halkier BA; Møller BL
    Plant Physiol; 1997 Dec; 115(4):1661-70. PubMed ID: 9414567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular snapshots of dynamic membrane-bound metabolons.
    Bassard JE; Laursen T
    Methods Enzymol; 2019; 617():1-27. PubMed ID: 30784399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphipol trapping of a functional CYP system.
    Laursen T; Naur P; Møller BL
    Biotechnol Appl Biochem; 2013; 60(1):119-27. PubMed ID: 23586999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.
    Koch BM; Sibbesen O; Halkier BA; Svendsen I; Møller BL
    Arch Biochem Biophys; 1995 Oct; 323(1):177-86. PubMed ID: 7487064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome.
    Kristensen C; Morant M; Olsen CE; Ekstrøm CT; Galbraith DW; Møller BL; Bak S
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1779-84. PubMed ID: 15665094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase.
    Bavishi K; Laursen T; Martinez KL; Møller BL; Della Pia EA
    Sci Rep; 2016 Jul; 6():29459. PubMed ID: 27386958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways.
    Clausen M; Kannangara RM; Olsen CE; Blomstedt CK; Gleadow RM; Jørgensen K; Bak S; Motawie MS; Møller BL
    Plant J; 2015 Nov; 84(3):558-73. PubMed ID: 26361733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cytochrome P450TYR, a multifunctional haem-thiolate N-hydroxylase involved in the biosynthesis of the cyanogenic glucoside dhurrin.
    Halkier BA; Sibbesen O; Koch B; Møller BL
    Drug Metabol Drug Interact; 1995; 12(3-4):285-97. PubMed ID: 8820857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways.
    Podust LM; Bach H; Kim Y; Lamb DC; Arase M; Sherman DH; Kelly SL; Waterman MR
    Protein Sci; 2004 Jan; 13(1):255-68. PubMed ID: 14691240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CYP79A1 catalyzed conversion of tyrosine to (E)-p-hydroxyphenylacetaldoxime unravelled using an improved method for homology modeling.
    Vazquez-Albacete D; Montefiori M; Kol S; Motawia MS; Møller BL; Olsen L; Nørholm MH
    Phytochemistry; 2017 Mar; 135():8-17. PubMed ID: 28088302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enzymatically active chimeric protein containing the hydrophilic form of NADPH-cytochrome P450 reductase fused to the membrane-binding domain of cytochrome b5.
    Gilep AA; Guryev OL; Usanov SA; Estabrook RW
    Biochem Biophys Res Commun; 2001 Jun; 284(4):937-41. PubMed ID: 11409883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.