These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 2162048)

  • 41. Evidence for the existence of two ATP-sensitive Rb+ occlusion pockets within the transmembrane domains of Na+/K+-ATPase.
    Liu L; Askari A
    J Biol Chem; 1997 May; 272(22):14380-6. PubMed ID: 9162075
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Occlusion of Rb+ after extensive tryptic digestion of shark rectal gland Na,K-ATPase.
    Esmann M; Sottrup-Jensen L
    Biochim Biophys Acta; 1992 Jul; 1108(2):247-52. PubMed ID: 1322176
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tryptic modification of red-cell sodium pump behaviour.
    Harvey WJ; Blostein R
    Biochim Biophys Acta; 1986 Apr; 856(3):496-504. PubMed ID: 3008833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cys(577) is a conformationally mobile residue in the ATP-binding domain of the Na,K-ATPase alpha-subunit.
    Gatto C; Thornewell SJ; Holden JP; Kaplan JH
    J Biol Chem; 1999 Aug; 274(35):24995-5003. PubMed ID: 10455178
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Occlusion of 22Na+ and 86Rb+ in membrane-bound and soluble protomeric alpha beta-units of Na,K-ATPase.
    Vilsen B; Andersen JP; Petersen J; Jørgensen PL
    J Biol Chem; 1987 Aug; 262(22):10511-7. PubMed ID: 3038885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rubidium occlusion within tryptic peptides of the H,K-ATPase.
    Rabon EC; Smillie K; Seru V; Rabon R
    J Biol Chem; 1993 Apr; 268(11):8012-8. PubMed ID: 8385132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thr-774 (transmembrane segment M5), Val-920 (M8), and Glu-954 (M9) are involved in Na+ transport, and Gln-923 (M8) is essential for Na,K-ATPase activity.
    Imagawa T; Yamamoto T; Kaya S; Sakaguchi K; Taniguchi K
    J Biol Chem; 2005 May; 280(19):18736-44. PubMed ID: 15764602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-affinity 86Rb-binding and structural changes in the alpha-subunit of Na+,K+-ATPase as detected by tryptic digestion and fluorescence analysis.
    Jørgensen PL; Petersen J
    Biochim Biophys Acta; 1982 Jul; 705(1):38-47. PubMed ID: 6288106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure-function relationships of Na(+), K(+), ATP, or Mg(2+) binding and energy transduction in Na,K-ATPase.
    Jorgensen PL; Pedersen PA
    Biochim Biophys Acta; 2001 May; 1505(1):57-74. PubMed ID: 11248189
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photoaffinity labeling of the active site of the Na+/K(+)-ATPase with 4-azido-2-nitrophenyl phosphate.
    Tran CM; Farley RA
    Biochemistry; 1996 Jan; 35(1):47-55. PubMed ID: 8555197
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional significance of the shark Na,K-ATPase N-terminal domain. Is the structurally variable N-Terminus involved in tissue-specific regulation by FXYD proteins?
    Cornelius F; Mahmmoud YA; Meischke L; Cramb G
    Biochemistry; 2005 Oct; 44(39):13051-62. PubMed ID: 16185073
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of atp or phosphate on passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():317-31. PubMed ID: 6290647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Guanidinium derivatives act as high affinity antagonists of Na+ ions in occlusion sites of Na+,K(+)-ATPase.
    David P; Mayan H; Cohen H; Tal DM; Karlish SJ
    J Biol Chem; 1992 Jan; 267(2):1141-9. PubMed ID: 1309763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combined effects of ATP and phosphate on rubidium exchange mediated by Na-K-ATPase reconstituted into phospholipid vesicles.
    Karlish SJ; Lieb WR; Stein WD
    J Physiol; 1982 Jul; 328():333-50. PubMed ID: 6290648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The amino-terminal segment of the catalytic subunit of kidney Na,K-ATPase regulates the potassium deocclusion pathway of the reaction cycle.
    Wierzbicki W; Blostein R
    Proc Natl Acad Sci U S A; 1993 Jan; 90(1):70-4. PubMed ID: 8380499
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modification of lysine 501 in Na,K-ATPase reveals coupling between cation occupancy and changes in the ATP binding domain.
    Ellis-Davies GC; Kaplan JH
    J Biol Chem; 1993 Jun; 268(16):11622-7. PubMed ID: 8389358
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleotide specificity of the E2K----E1K transition in (Na+ + K+)-ATPase as probed with tryptic inactivation and fragmentation.
    Schuurmans Stekhoven FM; Swarts HG; Zhao RS; de Pont JJ
    Biochim Biophys Acta; 1986 Oct; 861(2):259-66. PubMed ID: 3019402
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of lanthanides as competitors of Na+ and K+ in occlusion sites of renal (Na+,K+)-ATPase.
    David P; Karlish SJ
    J Biol Chem; 1991 Aug; 266(23):14896-902. PubMed ID: 1651313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural characterization of Na,K-ATPase from shark rectal glands by extensive trypsinization.
    Esmann M; Arora A; Maunsbach AB; Marsh D
    Biochemistry; 2006 Jan; 45(3):954-63. PubMed ID: 16411771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Allosteric regulation of the access channels to the Rb+ occlusion sites of (Na+ + K+)-ATPase.
    Hasenauer J; Huang WH; Askari A
    J Biol Chem; 1993 Feb; 268(5):3289-97. PubMed ID: 8381424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.