These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 21620545)
1. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany. Bonten LT; Groenenberg JE; Meesenburg H; de Vries W Environ Pollut; 2011 Oct; 159(10):2831-9. PubMed ID: 21620545 [TBL] [Abstract][Full Text] [Related]
2. Modelling the long-term soil response to atmospheric deposition at intensively monitored forest plots in Europe. Reinds GJ; Posch M; de Vries W Environ Pollut; 2009 Apr; 157(4):1258-69. PubMed ID: 19155109 [TBL] [Abstract][Full Text] [Related]
3. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetín, Czech Republic. Oulehle F; Hofmeister J; Cudlín P; Hruska J Sci Total Environ; 2006 Nov; 370(2-3):532-44. PubMed ID: 16935320 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils. Groenenberg JE; Dijkstra JJ; Bonten LT; de Vries W; Comans RN Environ Pollut; 2012 Jul; 166():98-107. PubMed ID: 22484504 [TBL] [Abstract][Full Text] [Related]
5. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands. Boxman AW; Peters RC; Roelofs JG Environ Pollut; 2008 Dec; 156(3):1252-9. PubMed ID: 18457906 [TBL] [Abstract][Full Text] [Related]
6. Twenty years of biological monitoring of element concentrations in permanent forest and grassland plots in Baden-Württemberg (SW Germany). Franzaring J; Holz I; Zipperle J; Fangmeier A Environ Sci Pollut Res Int; 2010 Jan; 17(1):4-12. PubMed ID: 19455359 [TBL] [Abstract][Full Text] [Related]
7. Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Belyazid S; Westling O; Sverdrup H Environ Pollut; 2006 Nov; 144(2):596-609. PubMed ID: 16515827 [TBL] [Abstract][Full Text] [Related]
8. Uncertainties in critical loads and target loads of sulphur and nitrogen for European forests: analysis and quantification. Reinds GJ; de Vries W Sci Total Environ; 2010 Mar; 408(8):1960-70. PubMed ID: 20053422 [TBL] [Abstract][Full Text] [Related]
9. Reduced European emissions of S and N--effects on air concentrations, deposition and soil water chemistry in Swedish forests. Pihl Karlsson G; Akselsson C; Hellsten S; Karlsson PE Environ Pollut; 2011 Dec; 159(12):3571-82. PubMed ID: 21862190 [TBL] [Abstract][Full Text] [Related]
10. A conceptual framework: redefining forest soil's critical acid loads under a changing climate. McNulty SG; Boggs JL Environ Pollut; 2010 Jun; 158(6):2053-8. PubMed ID: 20045233 [TBL] [Abstract][Full Text] [Related]
11. Element fluxes through European forest ecosystems and their relationships with stand and site characteristics. de Vries W; van der Salm C; Reinds GJ; Erisman JW Environ Pollut; 2007 Jul; 148(2):501-13. PubMed ID: 17291644 [TBL] [Abstract][Full Text] [Related]
12. Predicting acidification recovery at the Hubbard Brook Experimental Forest, New Hampshire: evaluation of four models. Tominaga K; Aherne J; Watmough SA; Alveteg M; Cosby BJ; Driscoll CT; Posch M; Pourmokhtarian A Environ Sci Technol; 2010 Dec; 44(23):9003-9. PubMed ID: 21028800 [TBL] [Abstract][Full Text] [Related]
13. Calculation and mapping of critical loads of sulphur and nitrogen for forest soils in Galicia (NW Spain). Rodríguez-Lado L; Macías F Sci Total Environ; 2006 Aug; 366(2-3):760-71. PubMed ID: 16297439 [TBL] [Abstract][Full Text] [Related]
14. Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Li C; Kang S; Zhang Q Environ Pollut; 2009; 157(8-9):2261-5. PubMed ID: 19371989 [TBL] [Abstract][Full Text] [Related]
15. A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate. Belyazid S; Kurz D; Braun S; Sverdrup H; Rihm B; Hettelingh JP Environ Pollut; 2011 Mar; 159(3):789-801. PubMed ID: 21145634 [TBL] [Abstract][Full Text] [Related]
16. Anthropogenic acidification effects in primeval forests in the Transcarpathian Mts., western Ukraine. Oulehle F; Hleb R; Houska J; Samonil P; Hofmeister J; Hruska J Sci Total Environ; 2010 Jan; 408(4):856-64. PubMed ID: 19914682 [TBL] [Abstract][Full Text] [Related]
17. Methodology to assess and map the potential development of forest ecosystems exposed to climate change and atmospheric nitrogen deposition: A pilot study in Germany. Schröder W; Nickel S; Jenssen M; Riediger J Sci Total Environ; 2015 Jul; 521-522():108-22. PubMed ID: 25829289 [TBL] [Abstract][Full Text] [Related]
18. Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests. Jeran Z; Mrak T; Jaćimović R; Batic F; Kastelec D; Mavsar R; Simoncic P Environ Pollut; 2007 Mar; 146(2):324-31. PubMed ID: 16720065 [TBL] [Abstract][Full Text] [Related]
19. Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk. Moreno-Jiménez E; Beesley L; Lepp NW; Dickinson NM; Hartley W; Clemente R Environ Pollut; 2011 Oct; 159(10):3078-85. PubMed ID: 21570165 [TBL] [Abstract][Full Text] [Related]
20. Effects of a low severity prescribed fire on water-soluble elements in ash from a cork oak (Quercus suber) forest located in the northeast of the Iberian Peninsula. Pereira P; Ubeda X; Martin D; Mataix-Solera J; Guerrero C Environ Res; 2011 Feb; 111(2):237-47. PubMed ID: 20869047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]