These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 21620687)
1. Alteration of municipal solid waste incineration bottom ash focusing on the evolution of iron-rich constituents. Wei Y; Shimaoka T; Saffarzadeh A; Takahashi F Waste Manag; 2011; 31(9-10):1992-2000. PubMed ID: 21620687 [TBL] [Abstract][Full Text] [Related]
2. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. Wei Y; Shimaoka T; Saffarzadeh A; Takahashi F J Hazard Mater; 2011 Mar; 187(1-3):534-43. PubMed ID: 21316147 [TBL] [Abstract][Full Text] [Related]
3. Impacts of natural weathering on the transformation/neoformation processes in landfilled MSWI bottom ash: a geoenvironmental perspective. Saffarzadeh A; Shimaoka T; Wei Y; Gardner KH; Musselman CN Waste Manag; 2011 Dec; 31(12):2440-54. PubMed ID: 21873042 [TBL] [Abstract][Full Text] [Related]
4. The weathering of municipal solid waste incineration bottom ash evaluated by some weathering indices for natural rock. Takahashi F; Shimaoka T Waste Manag; 2012 Dec; 32(12):2294-305. PubMed ID: 22796015 [TBL] [Abstract][Full Text] [Related]
6. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI). Aberg A; Kumpiene J; Ecke H Sci Total Environ; 2006 Feb; 355(1-3):1-12. PubMed ID: 15893365 [TBL] [Abstract][Full Text] [Related]
7. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Bayuseno AP; Schmahl WW Waste Manag; 2010; 30(8-9):1509-20. PubMed ID: 20381330 [TBL] [Abstract][Full Text] [Related]
8. In-depth mineralogical quantification of MSWI bottom ash phases and their association with potentially toxic elements. Alam Q; Schollbach K; van Hoek C; van der Laan S; de Wolf T; Brouwers HJH Waste Manag; 2019 Mar; 87():1-12. PubMed ID: 31109508 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties of incineration bottom ash: the influence of composite species. Weng MC; Lin CL; Ho CI Waste Manag; 2010 Jul; 30(7):1303-9. PubMed ID: 20005693 [TBL] [Abstract][Full Text] [Related]
10. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. Dabo D; Badreddine R; De Windt L; Drouadaine I J Hazard Mater; 2009 Dec; 172(2-3):904-13. PubMed ID: 19733006 [TBL] [Abstract][Full Text] [Related]
11. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives. Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484 [TBL] [Abstract][Full Text] [Related]
12. Effect of weathering treatment on the fractionation and leaching behavior of copper in municipal solid waste incinerator bottom ash. Yao J; Li WB; Tang M; Fang CR; Feng HJ; Shen DS Chemosphere; 2010 Oct; 81(5):571-6. PubMed ID: 20832839 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a former dump site in the Lagoon of Venice contaminated by municipal solid waste incinerator bottom ash, and estimation of possible environmental risk. Rigo C; Zamengo L; Rampazzo G; Argese E Chemosphere; 2009 Oct; 77(4):510-7. PubMed ID: 19695669 [TBL] [Abstract][Full Text] [Related]
14. The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Shim YS; Kim YK; Kong SH; Rhee SW; Lee WK Waste Manag; 2003; 23(9):851-7. PubMed ID: 14583248 [TBL] [Abstract][Full Text] [Related]
15. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues. Inanc B; Inoue Y; Yamada M; Ono Y; Nagamori M J Hazard Mater; 2007 Mar; 141(3):793-802. PubMed ID: 17030419 [TBL] [Abstract][Full Text] [Related]
16. Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching. Zomeren Av; Comans RN Waste Manag; 2009 Jul; 29(7):2059-64. PubMed ID: 19269157 [TBL] [Abstract][Full Text] [Related]
17. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation. Izawa MR; Banerjee NR; Osinski GR; Flemming RL; Parnell J; Cockell CS Astrobiology; 2011; 11(6):537-50. PubMed ID: 21767151 [TBL] [Abstract][Full Text] [Related]
18. A role for adsorption in lead leachability from MSWI bottom ASH. Chaspoul FR; Le Droguene MF; Barban G; Rose JC; Gallice PM Waste Manag; 2008; 28(8):1324-30. PubMed ID: 17881209 [TBL] [Abstract][Full Text] [Related]
19. Alterations of municipal solid waste incineration residues in a landfill. Shimaoka T; Zhang R; Watanabe K Waste Manag; 2007; 27(10):1444-51. PubMed ID: 17656082 [TBL] [Abstract][Full Text] [Related]
20. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Qian G; Cao Y; Chui P; Tay J J Hazard Mater; 2006 Feb; 129(1-3):274-81. PubMed ID: 16242842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]