These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21620693)

  • 1. Performance of a mobile mechanical screen to improve the commercial quality of wood chips for energy.
    Spinelli R; Ivorra L; Magagnotti N; Picchi G
    Bioresour Technol; 2011 Aug; 102(15):7366-70. PubMed ID: 21620693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine.
    Zhu W; Zhu JY; Gleisner R; Pan XJ
    Bioresour Technol; 2010 Apr; 101(8):2782-92. PubMed ID: 20006490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wood energy: predicting costs.
    Doty FD
    Science; 2009 Jun; 324(5933):1389; author reply 1390-1. PubMed ID: 19520939
    [No Abstract]   [Full Text] [Related]  

  • 4. Rail vs truck transport of biomass.
    Mahmudi H; Flynn PC
    Appl Biochem Biotechnol; 2006; 129-132():88-103. PubMed ID: 16915633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green fuels thrust.
    Bethencourt V
    Nat Biotechnol; 2009 Mar; 27(3):216. PubMed ID: 19270660
    [No Abstract]   [Full Text] [Related]  

  • 6. Industrial harvesting of olive tree pruning residue for energy biomass.
    Spinelli R; Picchi G
    Bioresour Technol; 2010 Jan; 101(2):730-5. PubMed ID: 19740650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance.
    Zhu JY; Pan X; Zalesny RS
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):847-57. PubMed ID: 20473606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of enzyme transport in wood chips for thermomechanical pulp refining.
    Pelletier A; Li K; Zhao Y; Court G; Luo J; Frith M
    Carbohydr Polym; 2013 Jun; 95(1):25-31. PubMed ID: 23618235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density.
    Lee JW; Kim YH; Lee SM; Lee HW
    Bioresour Technol; 2012 Jul; 116():471-6. PubMed ID: 22525262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Permeability of wood pellets in the presence of fines.
    Yazdanpanah F; Sokhansanj S; Lau AK; Lim CJ; Bi X; Melin S; Afzal M
    Bioresour Technol; 2010 Jul; 101(14):5565-70. PubMed ID: 20223658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process modeling of comprehensive integrated forest biorefinery--an integrated approach.
    Huang HJ; Lin W; Ramaswamy S; Tschirner U
    Appl Biochem Biotechnol; 2009 May; 154(1-3):26-37. PubMed ID: 19165631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchgrass (Panicum vigratum, L.) delivery to a biorefinery using integrated biomass supply analysis and logistics (IBSAL) model.
    Kumar A; Sokhansanj S
    Bioresour Technol; 2007 Mar; 98(5):1033-44. PubMed ID: 16797978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental crisis and its impact on women. The case of the Sudan.
    Bedri B; Osama S
    Women 2000; 1992 Jun; (5):4-7. PubMed ID: 12318291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling laws and technology development strategies for biorefineries and bioenergy plants.
    Jack MW
    Bioresour Technol; 2009 Dec; 100(24):6324-30. PubMed ID: 19635662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of biomass availability and processing cost on optimum size and processing technology selection.
    Searcy E; Flynn P
    Appl Biochem Biotechnol; 2009 May; 154(1-3):92-107. PubMed ID: 19015821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of agri-pellet production cost and optimum size.
    Sultana A; Kumar A; Harfield D
    Bioresour Technol; 2010 Jul; 101(14):5609-21. PubMed ID: 20189801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical methods in the development of eco-efficient wood-based pellet production and technology.
    Kuokkanen M; Kuokkanen T; Stoor T; Niinimäki J; Pohjonen V
    Waste Manag Res; 2009 Sep; 27(6):561-71. PubMed ID: 19470536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of liquefied wood as a new particle board adhesive system.
    Kunaver M; Medved S; Cuk N; Jasiukaityte E; Poljansek I; Strnad T
    Bioresour Technol; 2010 Feb; 101(4):1361-8. PubMed ID: 19836945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative environmental assessment of wood transport models: a case study of a Swedish pulp mill.
    González-García S; Berg S; Feijoo G; Moreira MT
    Sci Total Environ; 2009 May; 407(11):3530-9. PubMed ID: 19272634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial sustainability of competing wood energy options in Canada.
    Ackom EK; Mabee WE; Saddler JN
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2259-72. PubMed ID: 20533096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.