These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 21620904)
1. Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study. Cerdeira LT; Carneiro AR; Ramos RT; de Almeida SS; D'Afonseca V; Schneider MP; Baumbach J; Tauch A; McCulloch JA; Azevedo VA; Silva A J Microbiol Methods; 2011 Aug; 86(2):218-23. PubMed ID: 21620904 [TBL] [Abstract][Full Text] [Related]
2. Short reads and nonmodel species: exploring the complexities of next-generation sequence assembly and SNP discovery in the absence of a reference genome. Everett MV; Grau ED; Seeb JE Mol Ecol Resour; 2011 Mar; 11 Suppl 1():93-108. PubMed ID: 21429166 [TBL] [Abstract][Full Text] [Related]
3. High efficiency application of a mate-paired library from next-generation sequencing to postlight sequencing: Corynebacterium pseudotuberculosis as a case study for microbial de novo genome assembly. Ramos RT; Carneiro AR; de Castro Soares S; Barbosa S; Varuzza L; Orabona G; Tauch A; Azevedo V; Schneider MP; Silva A J Microbiol Methods; 2013 Dec; 95(3):441-7. PubMed ID: 23792707 [TBL] [Abstract][Full Text] [Related]
4. De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads. Farrer RA; Kemen E; Jones JD; Studholme DJ FEMS Microbiol Lett; 2009 Feb; 291(1):103-11. PubMed ID: 19077061 [TBL] [Abstract][Full Text] [Related]
5. Next-generation sequencing technologies and fragment assembly algorithms. Lee H; Tang H Methods Mol Biol; 2012; 855():155-74. PubMed ID: 22407708 [TBL] [Abstract][Full Text] [Related]
6. A biologist's guide to de novo genome assembly using next-generation sequence data: A test with fungal genomes. Haridas S; Breuill C; Bohlmann J; Hsiang T J Microbiol Methods; 2011 Sep; 86(3):368-75. PubMed ID: 21749903 [TBL] [Abstract][Full Text] [Related]
7. Construction and partial characterization of a Corynebacterium pseudotuberculosis bacterial artificial chromosome library through genomic survey sequencing. Dorella FA; Fachin MS; Billault A; Dias Neto E; Soravito C; Oliveira SC; Meyer R; Miyoshi A; Azevedo V Genet Mol Res; 2006 Nov; 5(4):653-63. PubMed ID: 17183477 [TBL] [Abstract][Full Text] [Related]
8. The present and future of de novo whole-genome assembly. Sohn JI; Nam JW Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661 [TBL] [Abstract][Full Text] [Related]
9. De novo sequencing of plant genomes using second-generation technologies. Imelfort M; Edwards D Brief Bioinform; 2009 Nov; 10(6):609-18. PubMed ID: 19933209 [TBL] [Abstract][Full Text] [Related]
10. Whole genome sequencing of environmental Vibrio cholerae O1 from 10 nanograms of DNA using short reads. Pérez Chaparro PJ; McCulloch JA; Cerdeira LT; Al-Dilaimi A; Canto de Sá LL; de Oliveira R; Tauch A; de Carvalho Azevedo VA; Cruz Schneider MP; da Silva AL J Microbiol Methods; 2011 Nov; 87(2):208-12. PubMed ID: 21871929 [TBL] [Abstract][Full Text] [Related]
12. Correction of sequencing errors in a mixed set of reads. Salmela L Bioinformatics; 2010 May; 26(10):1284-90. PubMed ID: 20378555 [TBL] [Abstract][Full Text] [Related]
19. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies. Ye C; Hill CM; Wu S; Ruan J; Ma ZS Sci Rep; 2016 Aug; 6():31900. PubMed ID: 27573208 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Li Z; Chen Y; Mu D; Yuan J; Shi Y; Zhang H; Gan J; Li N; Hu X; Liu B; Yang B; Fan W Brief Funct Genomics; 2012 Jan; 11(1):25-37. PubMed ID: 22184334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]