BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21620959)

  • 1. Leishmania-macrophage interactions: insights into the redox biology.
    Van Assche T; Deschacht M; da Luz RA; Maes L; Cos P
    Free Radic Biol Med; 2011 Jul; 51(2):337-51. PubMed ID: 21620959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages.
    Santos CX; Stolf BS; Takemoto PV; Amanso AM; Lopes LR; Souza EB; Goto H; Laurindo FR
    J Leukoc Biol; 2009 Oct; 86(4):989-98. PubMed ID: 19564574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leishmania spp.: proficiency of drug-resistant parasites.
    Natera S; Machuca C; Padrón-Nieves M; Romero A; Díaz E; Ponte-Sucre A
    Int J Antimicrob Agents; 2007 Jun; 29(6):637-42. PubMed ID: 17353113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parasitic adaptive mechanisms in infection by leishmania.
    Cunningham AC
    Exp Mol Pathol; 2002 Apr; 72(2):132-41. PubMed ID: 11890722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite.
    Shukla AK; Patra S; Dubey VK
    Eur J Med Chem; 2012 Aug; 54():49-58. PubMed ID: 22608855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox biology of Leishmania and macrophage targeted nanoparticles for therapy.
    Sarwar HS; Akhtar S; Sohail MF; Naveed Z; Rafay M; Nadhman A; Yasinzai M; Shahnaz G
    Nanomedicine (Lond); 2017 Jul; 12(14):1713-1725. PubMed ID: 28635366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Leishmaniasis: principles of the immune response and function of nitric oxide].
    Bogdan C
    Berl Munch Tierarztl Wochenschr; 1998; 111(11-12):409-14. PubMed ID: 9880934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential survival of Leishmania donovani amastigotes in human monocytes.
    Pearson RD; Harcus JL; Roberts D; Donowitz GR
    J Immunol; 1983 Oct; 131(4):1994-9. PubMed ID: 6619546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Nitric oxide and anti-protozoan chemotherapy].
    Gradoni L; Ascenzi P
    Parassitologia; 2004 Jun; 46(1-2):101-3. PubMed ID: 15305696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions.
    Becker K; Tilley L; Vennerstrom JL; Roberts D; Rogerson S; Ginsburg H
    Int J Parasitol; 2004 Feb; 34(2):163-89. PubMed ID: 15037104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell biology of host-parasite membrane interactions in leishmaniasis.
    Chang KP; Fong D
    Ciba Found Symp; 1983; 99():113-37. PubMed ID: 6357669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of intracellular cAMP in differentiation-coupled induction of resistance against oxidative damage in Leishmania donovani.
    Bhattacharya A; Biswas A; Das PK
    Free Radic Biol Med; 2008 Mar; 44(5):779-94. PubMed ID: 18078824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leishmania and the macrophage: a multifaceted interaction.
    Podinovskaia M; Descoteaux A
    Future Microbiol; 2015; 10(1):111-29. PubMed ID: 25598341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leishmania tarentolae: utility as an in vitro model for screening of antileishmanial agents.
    Taylor VM; Muñoz DL; Cedeño DL; Vélez ID; Jones MA; Robledo SM
    Exp Parasitol; 2010 Dec; 126(4):471-5. PubMed ID: 20685203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptosis in Leishmania species & its relevance to disease pathogenesis.
    Shaha C
    Indian J Med Res; 2006 Mar; 123(3):233-44. PubMed ID: 16778307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed.
    Leifso K; Cohen-Freue G; Dogra N; Murray A; McMaster WR
    Mol Biochem Parasitol; 2007 Mar; 152(1):35-46. PubMed ID: 17188763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells.
    Kolodziej H; Kiderlen AF
    Phytochemistry; 2005 Sep; 66(17):2056-71. PubMed ID: 16153409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the proteome and infectivity of Leishmania infantum induced by in vitro exposure to a nitric oxide donor.
    Dea-Ayuela MA; Ordoñez-Gutierrez L; Bolás-Fernández F
    Int J Med Microbiol; 2009 Mar; 299(3):221-32. PubMed ID: 18774335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leishmania spp.: nitric oxide-mediated metabolic inhibition of promastigote and axenically grown amastigote forms.
    Lemesre JL; Sereno D; Daulouède S; Veyret B; Brajon N; Vincendeau P
    Exp Parasitol; 1997 May; 86(1):58-68. PubMed ID: 9149241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro activity of the beta-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum.
    Di Giorgio C; Delmas F; Ollivier E; Elias R; Balansard G; Timon-David P
    Exp Parasitol; 2004; 106(3-4):67-74. PubMed ID: 15172213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.