These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21620993)

  • 21. Transcription of the glutamyl-tRNA reductase (hemA) gene in Salmonella typhimurium and Escherichia coli: role of the hemA P1 promoter and the arcA gene product.
    Choi P; Wang L; Archer CD; Elliott T
    J Bacteriol; 1996 Feb; 178(3):638-46. PubMed ID: 8550494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 5-Aminolevulinic acid level and dye-decolorizing peroxidase expression regulate heme synthesis in Escherichia coli.
    Feng C; Pan M; Tang L
    Biotechnol Lett; 2022 Feb; 44(2):271-277. PubMed ID: 34826004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and structure of the hem A gene of Escherichia coli K-12.
    Li JM; Russell CS; Cosloy SD
    Gene; 1989 Oct; 82(2):209-17. PubMed ID: 2684779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of Escherichia coli BW25113 for the production of 5-Aminolevulinic Acid based on CRISPR/Cas9 mediated gene knockout and metabolic pathway modification.
    Ye C; Yang Y; Chen X; Yang L; Hua X; Yang M; Zeng X; Qiao S
    J Biol Eng; 2022 Oct; 16(1):26. PubMed ID: 36229878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-enzymatic recycling of ATP and NADPH for the synthesis of 5-aminolevulinic acid using a semipermeable reaction system.
    Aiguo Z; Ruiwen D; Meizhi Z
    Biosci Biotechnol Biochem; 2019 Dec; 83(12):2213-2219. PubMed ID: 31362590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel inhibitors of glutamyl-tRNA(Glu) reductase identified through cell-based screening of the heme/chlorophyll biosynthetic pathway.
    Loida PJ; Thompson RL; Walker DM; CaJacob CA
    Arch Biochem Biophys; 1999 Dec; 372(2):230-7. PubMed ID: 10600160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of the enzymatic basis for delta-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli.
    Avissar YJ; Beale SI
    J Bacteriol; 1989 Jun; 171(6):2919-24. PubMed ID: 2656630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and characterization of the hemA gene for synthesis of delta-aminolevulinic acid in Xanthomonas campestris pv. phaseoli.
    Asahara N; Murakami K; Korbrisate S; Hashimoto Y; Murooka Y
    Appl Microbiol Biotechnol; 1994 Feb; 40(6):846-50. PubMed ID: 7764570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene.
    Verkamp E; Chelm BK
    J Bacteriol; 1989 Sep; 171(9):4728-35. PubMed ID: 2548996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli.
    Verkamp E; Backman VM; Björnsson JM; Söll D; Eggertsson G
    J Bacteriol; 1993 Mar; 175(5):1452-6. PubMed ID: 8444807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product.
    Schröder I; Hederstedt L; Kannangara CG; Gough P
    Biochem J; 1992 Feb; 281 ( Pt 3)(Pt 3):843-50. PubMed ID: 1536660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene.
    Choi HP; Lee YM; Yun CW; Sung HC
    J Microbiol Biotechnol; 2008 Jun; 18(6):1136-40. PubMed ID: 18600059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of inducers on the production of 5-aminolevulinic acid by recombinant Escherichia coli.
    Xiaoxia L; Jianping L; Peilin C
    Prep Biochem Biotechnol; 2006; 36(3):223-33. PubMed ID: 16707333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli.
    Zhang J; Weng H; Zhou Z; Du G; Kang Z
    Bioresour Technol; 2019 Feb; 274():353-360. PubMed ID: 30537593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme.
    Srivastava A; Lake V; Nogaj LA; Mayer SM; Willows RD; Beale SI
    Plant Mol Biol; 2005 Jul; 58(5):643-58. PubMed ID: 16158240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production.
    Fu W; Lin J; Cen P
    Appl Biochem Biotechnol; 2010 Jan; 160(2):456-66. PubMed ID: 18800199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa.
    Hungerer C; Troup B; Römling U; Jahn D
    J Bacteriol; 1995 Mar; 177(6):1435-43. PubMed ID: 7883699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Escherichia coli for the production of 5-aminolevulinic acid based on combined metabolic pathway modification and reporter-guided mutant selection (RGMS).
    Yang Y; Zou Y; Chen X; Sun H; Hua X; Johnston L; Zeng X; Qiao S; Ye C
    Biotechnol Biofuels Bioprod; 2024 Jun; 17(1):82. PubMed ID: 38886801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of iron availability on expression of the Bradyrhizobium japonicum hemA gene.
    Page KM; Connolly EL; Guerinot ML
    J Bacteriol; 1994 Mar; 176(5):1535-8. PubMed ID: 8113199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.