These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 21621006)

  • 1. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Thamilarasan M; Koczan D; Hecker M; Paap B; Zettl UK
    Autoimmun Rev; 2012 Jan; 11(3):174-9. PubMed ID: 21621006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathophysiology of translational regulation by microRNAs in multiple sclerosis.
    Junker A
    FEBS Lett; 2011 Dec; 585(23):3738-46. PubMed ID: 21453702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-7188-5p and miR-7235 regulates Multiple sclerosis in an experimental mouse model.
    Ibrahim HM; AlZahrani A; Hanieh H; Ahmed EA; Thirugnanasambantham K
    Mol Immunol; 2021 Nov; 139():157-167. PubMed ID: 34543842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-132 suppresses autoimmune encephalomyelitis by inducing cholinergic anti-inflammation: a new Ahr-based exploration.
    Hanieh H; Alzahrani A
    Eur J Immunol; 2013 Oct; 43(10):2771-82. PubMed ID: 23780851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the humoral immune system in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE).
    Ziemssen T; Ziemssen F
    Autoimmun Rev; 2005 Sep; 4(7):460-7. PubMed ID: 16137612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA regulation in experimental autoimmune encephalomyelitis in mice and marmosets resembles regulation in human multiple sclerosis lesions.
    Lescher J; Paap F; Schultz V; Redenbach L; Scheidt U; Rosewich H; Nessler S; Fuchs E; Gärtner J; Brück W; Junker A
    J Neuroimmunol; 2012 May; 246(1-2):27-33. PubMed ID: 22445295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenic mechanisms and experimental models of multiple sclerosis.
    Slavin A; Kelly-Modis L; Labadia M; Ryan K; Brown ML
    Autoimmunity; 2010 Nov; 43(7):504-13. PubMed ID: 20380590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORγt and STAT3.
    Zhu E; Wang X; Zheng B; Wang Q; Hao J; Chen S; Zhao Q; Zhao L; Wu Z; Yin Z
    J Immunol; 2014 Jun; 192(12):5599-609. PubMed ID: 24842756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis.
    Matejuk A; Bakke AC; Hopke C; Dwyer J; Vandenbark AA; Offner H
    J Neurosci Res; 2004 Jul; 77(1):119-26. PubMed ID: 15197745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-expression profiling of the early stages of MOG-induced EAE proves EAE-resistance as an active process.
    Mix E; Ibrahim S; Pahnke J; Koczan D; Sina C; Böttcher T; Thiesen HJ; Rolfs A
    J Neuroimmunol; 2004 Jun; 151(1-2):158-70. PubMed ID: 15145614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The miRNA Expression Profile of Experimental Autoimmune Encephalomyelitis Reveals Novel Potential Disease Biomarkers.
    Venkatesha SH; Dudics S; Song Y; Mahurkar A; Moudgil KD
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental allergic encephalomyelitis animal models for analyzing features of multiple sclerosis.
    Petry KG; Boullerne AI; Pousset F; Brochet B; Caillé JM; Dousset V
    Pathol Biol (Paris); 2000 Feb; 48(1):47-53. PubMed ID: 10729911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Multiple sclerosis and experimental autoimmune encephalomyelitis].
    Béraud-Juven E
    Rev Prat; 1994 Jan; 44(1):69-74. PubMed ID: 8178062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Of mice and men: experimental autoimmune encephalitis and multiple sclerosis.
    Handel AE; Lincoln MR; Ramagopalan SV
    Eur J Clin Invest; 2011 Nov; 41(11):1254-8. PubMed ID: 21418205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis.
    Garay L; Gonzalez Deniselle MC; Gierman L; Meyer M; Lima A; Roig P; De Nicola AF
    Neuroimmunomodulation; 2008; 15(1):76-83. PubMed ID: 18667803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What transgenic and knockout mouse models teach us about experimental autoimmune encephalomyelitis.
    Fazekas G; Tabira T
    Rev Immunogenet; 2000; 2(1):115-32. PubMed ID: 11324684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Multiple Sclerosis candidate gene expression kinetics in rat experimental autoimmune encephalomyelitis.
    Thessen Hedreul M; Gillett A; Olsson T; Jagodic M; Harris RA
    J Neuroimmunol; 2009 May; 210(1-2):30-9. PubMed ID: 19269041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting genotypic differences to identify genes important for EAE development.
    Jelinsky SA; Miyashiro JS; Saraf KA; Tunkey C; Reddy P; Newcombe J; Oestreicher JL; Brown E; Trepicchio WL; Leonard JP; Marusic S
    J Neurol Sci; 2005 Dec; 239(1):81-93. PubMed ID: 16214174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis.
    Martin R; McFarland HF
    Crit Rev Clin Lab Sci; 1995; 32(2):121-82. PubMed ID: 7598789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis.
    Owens T; Sriram S
    Neurol Clin; 1995 Feb; 13(1):51-73. PubMed ID: 7739505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.